Complex Numbers

Basics of Complex Numbers and Algebra

0:00
LearnStep 1/4

Basics of Complex Numbers and Algebra

Basics of Complex Numbers and Algebra

This lesson covers the following key concepts:

  • Definition of complex numbers: z = a + ib where i² = -1
  • Real and imaginary parts of complex numbers
  • Equality of complex numbers
  • Algebra: addition, subtraction, multiplication, division
  • Complex conjugate and its properties
  • Multiplicative inverse of complex numbers

Important Formulas

  • z=a+ib where i2=1z = a + ib \text{ where } i^2 = -1
  • z=aib (conjugate)\overline{z} = a - ib \text{ (conjugate)}
  • z+z=2Re(z),zz=2iIm(z)z + \overline{z} = 2\text{Re}(z), z - \overline{z} = 2i\text{Im}(z)
  • zz=a2+b2=z2z \cdot \overline{z} = a^2 + b^2 = |z|^2
  • 1z=zz2\frac{1}{z} = \frac{\overline{z}}{|z|^2}
  • z1+z2=z1+z2,z1z2=z1z2\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}