Modulus, Argument and Polar Representation
This lesson covers the following key concepts:
- Modulus (absolute value) of complex number
- Argument (amplitude) of complex number
- Principal value of argument: -π < arg(z) ≤ π
- Argand diagram and geometric representation
- Polar form: z = r(cos θ + i sin θ)
- Euler's form: z = re^(iθ)
- Properties of modulus and argument
Important Formulas
- ∣z∣=a2+b2
- arg(z)=tan−1(ab) (with quadrant check)
- z=r(cosθ+isinθ)=reiθ
- ∣z1z2∣=∣z1∣∣z2∣,z2z1=∣z2∣∣z1∣
- arg(z1z2)=arg(z1)+arg(z2)
- arg(z2z1)=arg(z1)−arg(z2)
- ∣z1+z2∣≤∣z1∣+∣z2∣ (triangle inequality)