Complex Numbers

Modulus, Argument and Polar Representation

0:00
LearnStep 1/4

Modulus, Argument and Polar Representation

Modulus, Argument and Polar Representation

This lesson covers the following key concepts:

  • Modulus (absolute value) of complex number
  • Argument (amplitude) of complex number
  • Principal value of argument: -π < arg(z) ≤ π
  • Argand diagram and geometric representation
  • Polar form: z = r(cos θ + i sin θ)
  • Euler's form: z = re^(iθ)
  • Properties of modulus and argument

Important Formulas

  • z=a2+b2|z| = \sqrt{a^2 + b^2}
  • arg(z)=tan1(ba) (with quadrant check)\arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \text{ (with quadrant check)}
  • z=r(cosθ+isinθ)=reiθz = r(\cos\theta + i\sin\theta) = re^{i\theta}
  • z1z2=z1z2,z1z2=z1z2|z_1 z_2| = |z_1| |z_2|, \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}
  • arg(z1z2)=arg(z1)+arg(z2)\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)
  • arg(z1z2)=arg(z1)arg(z2)\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)
  • z1+z2z1+z2 (triangle inequality)|z_1 + z_2| \leq |z_1| + |z_2| \text{ (triangle inequality)}