Quadratic Equations and Theory of Equations

Symmetric Functions and Polynomial Equations

0:00
LearnStep 1/4

Symmetric Functions and Polynomial Equations

Symmetric Functions and Polynomial Equations

This lesson covers the following key concepts:

  • Symmetric functions of roots
  • Higher degree polynomial equations
  • Relation between roots and coefficients for cubic, quartic
  • Sum of powers of roots
  • Product of differences of roots
  • Transformation of equations
  • Newton's identities for symmetric functions

Important Formulas

  • α2+β2=(α+β)22αβ\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta
  • α3+β3=(α+β)33αβ(α+β)\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)
  • α4+β4=(α2+β2)22(αβ)2\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2
  • 1α+1β=α+βαβ\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}
  • Cubic: x3+px2+qx+r=0,α+β+γ=p\text{Cubic: } x^3 + px^2 + qx + r = 0, \alpha + \beta + \gamma = -p
  • αβ+βγ+γα=q,αβγ=r\alpha\beta + \beta\gamma + \gamma\alpha = q, \alpha\beta\gamma = -r
  • αβ=Da|\alpha - \beta| = \frac{\sqrt{D}}{|a|}
Symmetric Functions and Polynomial Equations | JEE Main Algebra Crash Course | Mathematicon | Mathematicon