Quadratic Equations and Theory of Equations

Equations Reducible to Quadratic and Common Roots

0:00
LearnStep 1/4

Equations Reducible to Quadratic and Common Roots

Equations Reducible to Quadratic and Common Roots

This lesson covers the following key concepts:

  • Biquadratic equations: ax⁴ + bx² + c = 0
  • Reciprocal equations
  • Equations solvable by substitution
  • Common roots of two quadratic equations
  • Condition for exactly one common root
  • Condition for both roots common
  • Applications to JEE problems

Important Formulas

  • Biquadratic: ax4+bx2+c=0let y=x2\text{Biquadratic: } ax^4 + bx^2 + c = 0 \Rightarrow \text{let } y = x^2
  • One common root: (a1c2a2c1)2=(b1c2b2c1)(a1b2a2b1)\text{One common root: } (a_1c_2 - a_2c_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)
  • Both roots common: a1a2=b1b2=c1c2\text{Both roots common: } \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}
  • Reciprocal eq: ax4+bx3+cx2+bx+a=0divide by x2\text{Reciprocal eq: } ax^4 + bx^3 + cx^2 + bx + a = 0 \Rightarrow \text{divide by } x^2
  • Let y=x+1x for reciprocal equations\text{Let } y = x + \frac{1}{x} \text{ for reciprocal equations}