Sequences and Series

Geometric Progression (GP)

0:00
LearnStep 1/4

Geometric Progression (GP)

Geometric Progression (GP)

This lesson covers the following key concepts:

  • Definition and general term of GP
  • Common ratio and its properties
  • nth term formula: aₙ = arⁿ⁻¹
  • Sum of n terms of finite GP
  • Sum to infinity (|r| < 1)
  • Properties of GP (three terms in GP, geometric mean)
  • Insertion of geometric means between two numbers

Important Formulas

  • an=arn1a_n = ar^{n-1}
  • Sn=a(1rn)1r=a(rn1)r1S_n = \frac{a(1-r^n)}{1-r} = \frac{a(r^n - 1)}{r - 1}
  • S=a1r for r<1S_\infty = \frac{a}{1-r} \text{ for } |r| < 1
  • GM between a,b:ab\text{GM between } a, b: \sqrt{ab}
  • If a,b,c in GP: b2=ac\text{If } a, b, c \text{ in GP: } b^2 = ac
  • Insert m GMs: r=(ba)1/(m+1)\text{Insert m GMs: } r = \left(\frac{b}{a}\right)^{1/(m+1)}