Sequences and Series

AM-GM-HM and Special Series

0:00
LearnStep 1/4

AM-GM-HM and Special Series

AM-GM-HM and Special Series

This lesson covers the following key concepts:

  • Arithmetic Mean (AM), Geometric Mean (GM), Harmonic Mean (HM)
  • Relationship: AM ≥ GM ≥ HM
  • Harmonic Progression (HP)
  • Sum of first n natural numbers: Σn
  • Sum of squares: Σn²
  • Sum of cubes: Σn³
  • Method of differences for series summation

Important Formulas

  • AM=a+b2,GM=ab,HM=2aba+b\text{AM} = \frac{a+b}{2}, \text{GM} = \sqrt{ab}, \text{HM} = \frac{2ab}{a+b}
  • AMGMHM\text{AM} \geq \text{GM} \geq \text{HM}
  • GM2=AM×HM\text{GM}^2 = \text{AM} \times \text{HM}
  • k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
  • k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
  • k=1nk3=[n(n+1)2]2\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2
  • HP: 1a,1a+d,1a+2d,...\text{HP: } \frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, ...