Sequences and Series

Harmonic Progression and Advanced Applications

0:00
LearnStep 1/4

Harmonic Progression and Advanced Applications

Harmonic Progression and Advanced Applications

This lesson covers the following key concepts:

  • Harmonic Progression (HP) definition
  • nth term of HP
  • Sum of HP (not standard, use reciprocals)
  • Relationship with AP
  • Insertion of harmonic means
  • Applications of HP in problems
  • Mixed problems involving AP, GP, HP

Important Formulas

  • HP: if 1a,1b,1c are in AP\text{HP: if } \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in AP}
  • nth term of HP: 1a+(n1)d where reciprocals form AP\text{nth term of HP: } \frac{1}{a + (n-1)d} \text{ where reciprocals form AP}
  • Three terms in HP: 1a,1b,1c2b=1a+1c\text{Three terms in HP: } \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \Rightarrow \frac{2}{b} = \frac{1}{a} + \frac{1}{c}
  • Insert m HMs between a, b: find d for AP of reciprocals\text{Insert m HMs between a, b: find d for AP of reciprocals}
  • If a, b, c in HP: b=2aca+c\text{If a, b, c in HP: } b = \frac{2ac}{a + c}
  • AM×HM=GM2\text{AM} \times \text{HM} = \text{GM}^2