Permutations and Combinations

Multinomial Theorem and Advanced Counting

0:00
LearnStep 1/4

Multinomial Theorem and Advanced Counting

Multinomial Theorem and Advanced Counting

This lesson covers the following key concepts:

  • Multinomial theorem for (x₁ + x₂ + ... + xₖ)ⁿ
  • Finding coefficient in multinomial expansion
  • Rank of a word in dictionary
  • Number of ways to arrange with specific positions
  • Selection from identical and distinct objects
  • Inclusion-Exclusion Principle
  • JEE-specific advanced problems

Important Formulas

  • (x1+x2+...+xk)n=n!r1!r2!...rk!x1r1x2r2...xkrk(x_1 + x_2 + ... + x_k)^n = \sum \frac{n!}{r_1! r_2! ... r_k!} x_1^{r_1} x_2^{r_2} ... x_k^{r_k}
  • where r1+r2+...+rk=n\text{where } r_1 + r_2 + ... + r_k = n
  • Rank formula: use permutations of letters before\text{Rank formula: use permutations of letters before}
  • Inclusion-Exclusion: AB=A+BAB\text{Inclusion-Exclusion: } |A \cup B| = |A| + |B| - |A \cap B|
  • ABC=A+B+CABBCCA+ABC|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|
  • Select from n identical + m distinct: 2m(n+1)1\text{Select from } n \text{ identical + } m \text{ distinct: } 2^m (n+1) - 1