Binomial Theorem

Binomial Expression and Expansion Using Pascal's Triangle

0:00
LearnStep 1/4

Binomial Expression and Expansion Using Pascal's Triangle

Binomial Expression and Expansion Using Pascal's Triangle

This lesson covers the following key concepts:

  • Binomial expression (x + y)ⁿ
  • Pascal's triangle construction and pattern
  • Expansion of (x + y)ⁿ using Pascal's triangle
  • Finding coefficients from Pascal's triangle
  • Properties of Pascal's triangle
  • Number of terms in expansion
  • Basic binomial expansions for small n

Important Formulas

  • (x + y)^n = \sum_{r=0}^{n} ^nC_r x^{n-r} y^r
  • Pascal’s triangle: each entry = sum of two above\text{Pascal's triangle: each entry = sum of two above}
  • Row n gives coefficients of (x+y)n\text{Row } n \text{ gives coefficients of } (x+y)^n
  • Number of terms=n+1\text{Number of terms} = n + 1
  • nCr=n1Cr1+n1Cr (Pascal’s identity)^nC_r = ^{n-1}C_{r-1} + ^{n-1}C_r \text{ (Pascal's identity)}