Binomial Theorem

Divisibility, Approximations and Applications

0:00
LearnStep 1/4

Divisibility, Approximations and Applications

Divisibility, Approximations and Applications

This lesson covers the following key concepts:

  • Divisibility problems using binomial theorem
  • Finding remainders
  • Approximations using (1 + x)ⁿ for small x
  • Exponential series eˣ
  • Logarithmic series
  • Binomial theorem for negative/fractional indices
  • Condition: |x| < 1 for infinite expansion

Important Formulas

  • Remainder: write a=b±k, expand (b±k)n\text{Remainder: write } a = b \pm k, \text{ expand } (b \pm k)^n
  • (1+x)n1+nx for small x(1 + x)^n \approx 1 + nx \text{ for small } x
  • ex=1+x+x22!+x33!+...e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...
  • ln(1+x)=xx22+x33... for x<1\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - ... \text{ for } |x| < 1
  • (1+x)n=1+nx+n(n1)2!x2+... for x<1,nQ(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + ... \text{ for } |x| < 1, n \in \mathbb{Q}
  • (1+x)1=1x+x2x3+...(1 + x)^{-1} = 1 - x + x^2 - x^3 + ...