Matrices and Determinants

Special Matrices and Symmetric Properties

0:00
LearnStep 1/4

Special Matrices and Symmetric Properties

Special Matrices and Symmetric Properties

This lesson covers the following key concepts:

  • Symmetric matrix: A = Aᵀ
  • Skew-symmetric matrix: A = -Aᵀ
  • Expressing any matrix as sum of symmetric and skew-symmetric
  • Orthogonal matrices: AAᵀ = I
  • Properties of symmetric and skew-symmetric matrices
  • Conjugate and complex matrices
  • Hermitian and skew-Hermitian matrices

Important Formulas

  • A=AT (symmetric)A = A^T \text{ (symmetric)}
  • A=AT (skew-symmetric)A = -A^T \text{ (skew-symmetric)}
  • A=A+AT2+AAT2A = \frac{A + A^T}{2} + \frac{A - A^T}{2}
  • Diagonal elements of skew-symmetric = 0\text{Diagonal elements of skew-symmetric = 0}
  • AAT=IA=±1 (orthogonal)AA^T = I \Rightarrow |A| = \pm 1 \text{ (orthogonal)}
  • A+AT always symmetricA + A^T \text{ always symmetric}
  • AAT always skew-symmetricA - A^T \text{ always skew-symmetric}