Matrices and Determinants

Determinants: Evaluation and Properties

0:00
LearnStep 1/4

Determinants: Evaluation and Properties

Determinants: Evaluation and Properties

This lesson covers the following key concepts:

  • Value of 2×2 and 3×3 determinants
  • Minor and cofactor of elements
  • Expansion along any row or column
  • Properties: row/column operations, transpose, product
  • Product of two determinants
  • Differentiation and integration of determinants
  • Special determinants: Vandermonde, circulant

Important Formulas

  • abcd=adbc\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
  • Mij=minor,Aij=(1)i+jMij (cofactor)M_{ij} = \text{minor}, A_{ij} = (-1)^{i+j}M_{ij} \text{ (cofactor)}
  • AT=A|A^T| = |A|
  • AB=AB|AB| = |A| \cdot |B|
  • kA=knA for n×n|kA| = k^n|A| \text{ for } n \times n
  • Interchange rows: AA\text{Interchange rows: } |A| \rightarrow -|A|
  • Vandermonde: (ba)(ca)(cb)\text{Vandermonde: } (b-a)(c-a)(c-b)