Matrices and Determinants

Adjoint, Inverse and Matrix Polynomial

0:00
LearnStep 1/4

Adjoint, Inverse and Matrix Polynomial

Adjoint, Inverse and Matrix Polynomial

This lesson covers the following key concepts:

  • Adjoint (adjugate) of a matrix
  • Singular and non-singular matrices
  • Inverse of a matrix: A⁻¹ = adj(A)/|A|
  • Properties of inverse
  • Matrix polynomial
  • Characteristic equation of a matrix
  • Cayley-Hamilton theorem
  • Finding A⁻¹ and Aⁿ using Cayley-Hamilton

Important Formulas

  • adj(A)=[Aij]T\text{adj}(A) = [A_{ij}]^T
  • Aadj(A)=AIA \cdot \text{adj}(A) = |A|I
  • A1=adj(A)A if A0A^{-1} = \frac{\text{adj}(A)}{|A|} \text{ if } |A| \neq 0
  • (AB)1=B1A1(AB)^{-1} = B^{-1}A^{-1}
  • Characteristic eq: AλI=0\text{Characteristic eq: } |A - \lambda I| = 0
  • Cayley-Hamilton: A satisfies its own characteristic eq\text{Cayley-Hamilton: A satisfies its own characteristic eq}
  • A2(trA)A+AI=0 (for 2×2)A^2 - (\text{tr}A)A + |A|I = 0 \text{ (for 2×2)}