Compound and Multiple Angle Formulas

Double Angle Formulas

0:00
LearnStep 1/4

Double Angle Formulas

Double Angle Formulas: Your Key to JEE Trigonometry

Hello JEE aspirants! Welcome to a crucial topic in Trigonometry: Double Angle Formulas. These formulas are not just theoretical tools; they are powerful shortcuts that can significantly simplify complex problems in JEE Main. Mastering them will give you a distinct advantage in tackling a wide range of questions, from trigonometry itself to calculus and coordinate geometry.

Understanding the Concept

Double angle formulas, as the name suggests, express trigonometric functions of an angle 2A2A in terms of trigonometric functions of the angle AA. Think of them as special cases derived from the compound angle formulas. Instead of having two different angles, we have the same angle doubled. Let's dive into each formula.

1. The Sine Double Angle Formula: sin2A\sin 2A

sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A

Derivation: Recall the compound angle formula for sine: sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B. Now, let B=AB = A. We get:

sin(A+A)=sinAcosA+cosAsinA=2sinAcosA\sin(A + A) = \sin A \cos A + \cos A \sin A = 2 \sin A \cos A

Example: Suppose you need to find sin2θ\sin 2\theta and you know that sinθ=35\sin \theta = \frac{3}{5} and θ\theta is in the first quadrant. First, find cosθ\cos \theta using the Pythagorean identity: cosθ=1sin2θ=1(35)2=45\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5}. Then, sin2θ=2×35×45=2425\sin 2\theta = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}.

2. The Cosine Double Angle Formulas: cos2A\cos 2A

Cosine has three different forms for its double angle formula, each useful in different situations.

cos2A=cos2Asin2A=2cos2A1=12sin2A\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A

Derivation: Start with the cosine compound angle formula: cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B. Let B=AB = A.

cos(A+A)=cosAcosAsinAsinA=cos2Asin2A\cos(A + A) = \cos A \cos A - \sin A \sin A = \cos^2 A - \sin^2 A

Now, using the Pythagorean identity cos2A+sin2A=1\cos^2 A + \sin^2 A = 1, we can derive the other two forms:

  • cos2A=1sin2A    cos2A=(1sin2A)sin2A=12sin2A\cos^2 A = 1 - \sin^2 A \implies \cos 2A = (1 - \sin^2 A) - \sin^2 A = 1 - 2\sin^2 A
  • sin2A=1cos2A    cos2A=cos2A(1cos2A)=2cos2A1\sin^2 A = 1 - \cos^2 A \implies \cos 2A = \cos^2 A - (1 - \cos^2 A) = 2\cos^2 A - 1

Example: If cosA=513\cos A = \frac{5}{13}, find cos2A\cos 2A. We can use any of the three forms. Let's use cos2A=2cos2A1=2×(513)21=2×251691=501691=119169\cos 2A = 2\cos^2 A - 1 = 2 \times (\frac{5}{13})^2 - 1 = 2 \times \frac{25}{169} - 1 = \frac{50}{169} - 1 = -\frac{119}{169}.

3. The Tangent Double Angle Formula: tan2A\tan 2A

tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}

Derivation: Using the tangent compound angle formula: tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}. Let B=AB = A.

tan(A+A)=tanA+tanA1tanAtanA=2tanA1tan2A\tan(A + A) = \frac{\tan A + \tan A}{1 - \tan A \tan A} = \frac{2\tan A}{1 - \tan^2 A}

Example: If tanA=34\tan A = \frac{3}{4}, find tan2A\tan 2A. tan2A=2×341(34)2=321916=32716=32×167=247\tan 2A = \frac{2 \times \frac{3}{4}}{1 - (\frac{3}{4})^2} = \frac{\frac{3}{2}}{1 - \frac{9}{16}} = \frac{\frac{3}{2}}{\frac{7}{16}} = \frac{3}{2} \times \frac{16}{7} = \frac{24}{7}.

4. Expressing sinA\sin A in terms of tan(A/2)\tan(A/2)

sinA=2tan(A/2)1+tan2(A/2)\sin A = \frac{2\tan(A/2)}{1 + \tan^2(A/2)}

This is a handy formula when you have information about tan(A/2)\tan(A/2) and need to find sinA\sin A. It's particularly useful in problems involving the substitution t=tan(A/2)t = \tan(A/2) to solve trigonometric equations.

Derivation: Let A=2×(A/2)A = 2 \times (A/2). Using the double angle formula for sine, sinA=sin(2×(A/2))=2sin(A/2)cos(A/2)\sin A = \sin(2 \times (A/2)) = 2 \sin(A/2) \cos(A/2).

Now, divide and multiply by cos(A/2)\cos(A/2): sinA=2sin(A/2)cos(A/2)cos2(A/2)=2tan(A/2)cos2(A/2)\sin A = 2 \frac{\sin(A/2)}{\cos(A/2)} \cos^2(A/2) = 2 \tan(A/2) \cos^2(A/2).

Since cos2(A/2)=1sec2(A/2)=11+tan2(A/2)\cos^2(A/2) = \frac{1}{\sec^2(A/2)} = \frac{1}{1 + \tan^2(A/2)}, we get:

sinA=2tan(A/2)1+tan2(A/2)\sin A = \frac{2\tan(A/2)}{1 + \tan^2(A/2)}

Example: If tan(A/2)=12\tan(A/2) = \frac{1}{2}, then sinA=2×121+(12)2=11+14=154=45\sin A = \frac{2 \times \frac{1}{2}}{1 + (\frac{1}{2})^2} = \frac{1}{1 + \frac{1}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5}.

Applications in Simplification

Double angle formulas are extremely useful in simplifying trigonometric expressions. Often, a complex expression can be reduced to a simpler form by recognizing and applying these formulas.

Example: Simplify sin2x1+cos2x\frac{\sin 2x}{1 + \cos 2x}.

Using the formulas sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x and cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1, we have:

sin2x1+cos2x=2sinxcosx1+(2cos2x1)=2sinxcosx2cos2x=sinxcosx=tanx\frac{\sin 2x}{1 + \cos 2x} = \frac{2 \sin x \cos x}{1 + (2\cos^2 x - 1)} = \frac{2 \sin x \cos x}{2\cos^2 x} = \frac{\sin x}{\cos x} = \tan x

Tip: When you see expressions like 2sinAcosA2\sin A \cos A, cos2Asin2A\cos^2 A - \sin^2 A, or 2tanA1tan2A\frac{2\tan A}{1 - \tan^2 A}, immediately think of double angle formulas. Recognizing these patterns is key to simplifying expressions quickly.

Common Mistake: Be careful with the signs, especially when using the cosine double angle formulas. Make sure you choose the correct form based on the information given in the problem.

JEE-Specific Tricks

In JEE, you might encounter problems where you need to cleverly apply double angle formulas in combination with other trigonometric identities.

Example: Find the value of cos20cos40cos80\cos 20^\circ \cos 40^\circ \cos 80^\circ.

Multiply and divide by sin20\sin 20^\circ:

sin20cos20cos40cos80sin20=12sin40cos40cos80sin20=14sin80cos80sin20=18sin160sin20\frac{\sin 20^\circ \cos 20^\circ \cos 40^\circ \cos 80^\circ}{\sin 20^\circ} = \frac{\frac{1}{2} \sin 40^\circ \cos 40^\circ \cos 80^\circ}{\sin 20^\circ} = \frac{\frac{1}{4} \sin 80^\circ \cos 80^\circ}{\sin 20^\circ} = \frac{\frac{1}{8} \sin 160^\circ}{\sin 20^\circ}

Since sin160=sin(18020)=sin20\sin 160^\circ = \sin (180^\circ - 20^\circ) = \sin 20^\circ, the expression simplifies to 18\frac{1}{8}.

Mastering double angle formulas is essential for your JEE preparation. Practice lots of problems, and you'll be well on your way to acing trigonometry!