Compound and Multiple Angle Formulas

Triple Angle and Half Angle Formulas

0:00
LearnStep 1/4

Triple Angle and Half Angle Formulas

Triple and Half Angle Formulas: Your JEE Main Toolkit

Welcome, future engineers! In this lesson, we'll delve into the world of triple and half angle formulas. These trigonometric identities are super handy for simplifying complex expressions and solving problems quickly, especially in JEE Main. Mastering these formulas will not only boost your speed but also deepen your understanding of trigonometric relationships.

Understanding the Concepts

Triple and half angle formulas are derived from the fundamental compound angle formulas we've already learned. Instead of dealing with sums or differences of angles, we're now focusing on multiples (specifically, three times an angle) and fractions (half of an angle). Think of it as zooming in and out on the unit circle!

1. Triple Angle Formulas

These formulas express trigonometric functions of 3A3A in terms of trigonometric functions of AA.

a. Sine of 3A: sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4\sin^3 A

sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4\sin^3 A

Derivation:

We can derive this using the compound angle formula for sine: sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B.

Let's write 3A3A as A+2AA + 2A:

sin3A=sin(A+2A)=sinAcos2A+cosAsin2A\sin 3A = \sin(A + 2A) = \sin A \cos 2A + \cos A \sin 2A

Now, use the double angle formulas: cos2A=12sin2A\cos 2A = 1 - 2\sin^2 A and sin2A=2sinAcosA\sin 2A = 2\sin A \cos A.

sin3A=sinA(12sin2A)+cosA(2sinAcosA)\sin 3A = \sin A (1 - 2\sin^2 A) + \cos A (2\sin A \cos A)

sin3A=sinA2sin3A+2sinAcos2A\sin 3A = \sin A - 2\sin^3 A + 2\sin A \cos^2 A

Since cos2A=1sin2A\cos^2 A = 1 - \sin^2 A:

sin3A=sinA2sin3A+2sinA(1sin2A)\sin 3A = \sin A - 2\sin^3 A + 2\sin A (1 - \sin^2 A)

sin3A=sinA2sin3A+2sinA2sin3A\sin 3A = \sin A - 2\sin^3 A + 2\sin A - 2\sin^3 A

sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4\sin^3 A

Example: If sinA=12\sin A = \frac{1}{2}, then sin3A=3(12)4(12)3=3212=1\sin 3A = 3(\frac{1}{2}) - 4(\frac{1}{2})^3 = \frac{3}{2} - \frac{1}{2} = 1.

b. Cosine of 3A: cos3A=4cos3A3cosA\cos 3A = 4\cos^3 A - 3\cos A

cos3A=4cos3A3cosA\cos 3A = 4\cos^3 A - 3\cos A

Derivation:

Similar to the sine derivation, we start with cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B.

cos3A=cos(A+2A)=cosAcos2AsinAsin2A\cos 3A = \cos(A + 2A) = \cos A \cos 2A - \sin A \sin 2A

Use the double angle formulas: cos2A=2cos2A1\cos 2A = 2\cos^2 A - 1 and sin2A=2sinAcosA\sin 2A = 2\sin A \cos A.

cos3A=cosA(2cos2A1)sinA(2sinAcosA)\cos 3A = \cos A (2\cos^2 A - 1) - \sin A (2\sin A \cos A)

cos3A=2cos3AcosA2sin2AcosA\cos 3A = 2\cos^3 A - \cos A - 2\sin^2 A \cos A

Since sin2A=1cos2A\sin^2 A = 1 - \cos^2 A:

cos3A=2cos3AcosA2(1cos2A)cosA\cos 3A = 2\cos^3 A - \cos A - 2(1 - \cos^2 A) \cos A

cos3A=2cos3AcosA2cosA+2cos3A\cos 3A = 2\cos^3 A - \cos A - 2\cos A + 2\cos^3 A

cos3A=4cos3A3cosA\cos 3A = 4\cos^3 A - 3\cos A

Example: If cosA=12\cos A = \frac{1}{2}, then cos3A=4(12)33(12)=1232=1\cos 3A = 4(\frac{1}{2})^3 - 3(\frac{1}{2}) = \frac{1}{2} - \frac{3}{2} = -1.

c. Tangent of 3A: tan3A=3tanAtan3A13tan2A\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}

tan3A=3tanAtan3A13tan2A\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}

Derivation:

Using tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}:

tan3A=tan(A+2A)=tanA+tan2A1tanAtan2A\tan 3A = \tan(A + 2A) = \frac{\tan A + \tan 2A}{1 - \tan A \tan 2A}

Use the double angle formula: tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}.

tan3A=tanA+2tanA1tan2A1tanA2tanA1tan2A\tan 3A = \frac{\tan A + \frac{2\tan A}{1 - \tan^2 A}}{1 - \tan A \cdot \frac{2\tan A}{1 - \tan^2 A}}

Multiply the numerator and denominator by (1tan2A)(1 - \tan^2 A):

tan3A=tanA(1tan2A)+2tanA1tan2A2tan2A\tan 3A = \frac{\tan A (1 - \tan^2 A) + 2\tan A}{1 - \tan^2 A - 2\tan^2 A}

tan3A=tanAtan3A+2tanA13tan2A\tan 3A = \frac{\tan A - \tan^3 A + 2\tan A}{1 - 3\tan^2 A}

tan3A=3tanAtan3A13tan2A\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}

Example: If tanA=13\tan A = \frac{1}{\sqrt{3}}, then tan3A=3(13)(13)313(13)2=313311\tan 3A = \frac{3(\frac{1}{\sqrt{3}}) - (\frac{1}{\sqrt{3}})^3}{1 - 3(\frac{1}{\sqrt{3}})^2} = \frac{\sqrt{3} - \frac{1}{3\sqrt{3}}}{1 - 1}, which is undefined (as expected, since A=30A = 30^\circ and 3A=903A = 90^\circ).

2. Half Angle Formulas

These formulas express trigonometric functions of A2\frac{A}{2} in terms of trigonometric functions of AA.

a. Sine of A/2: sinA2=±1cosA2\sin\frac{A}{2} = \pm\sqrt{\frac{1 - \cos A}{2}}

sinA2=±1cosA2\sin\frac{A}{2} = \pm\sqrt{\frac{1 - \cos A}{2}}

Derivation:

Start with the double angle formula: cos2θ=12sin2θ\cos 2\theta = 1 - 2\sin^2 \theta. Let θ=A2\theta = \frac{A}{2}.

cosA=12sin2A2\cos A = 1 - 2\sin^2\frac{A}{2}

2sin2A2=1cosA2\sin^2\frac{A}{2} = 1 - \cos A

sin2A2=1cosA2\sin^2\frac{A}{2} = \frac{1 - \cos A}{2}

sinA2=±1cosA2\sin\frac{A}{2} = \pm\sqrt{\frac{1 - \cos A}{2}}

Important: The ±\pm sign depends on the quadrant in which A2\frac{A}{2} lies. If A2\frac{A}{2} is in the first or second quadrant, sinA2\sin\frac{A}{2} is positive; if it's in the third or fourth, it's negative.

Example: Let A=60A = 60^\circ. Then cosA=12\cos A = \frac{1}{2}, and sin30=sin602=1122=14=12\sin 30^\circ = \sin\frac{60^\circ}{2} = \sqrt{\frac{1 - \frac{1}{2}}{2}} = \sqrt{\frac{1}{4}} = \frac{1}{2} (positive root since 3030^\circ is in the first quadrant).

b. Cosine of A/2: cosA2=±1+cosA2\cos\frac{A}{2} = \pm\sqrt{\frac{1 + \cos A}{2}}

cosA2=±1+cosA2\cos\frac{A}{2} = \pm\sqrt{\frac{1 + \cos A}{2}}

Derivation:

Start with the double angle formula: cos2θ=2cos2θ1\cos 2\theta = 2\cos^2 \theta - 1. Let θ=A2\theta = \frac{A}{2}.

cosA=2cos2A21\cos A = 2\cos^2\frac{A}{2} - 1

2cos2A2=1+cosA2\cos^2\frac{A}{2} = 1 + \cos A

cos2A2=1+cosA2\cos^2\frac{A}{2} = \frac{1 + \cos A}{2}

cosA2=±1+cosA2\cos\frac{A}{2} = \pm\sqrt{\frac{1 + \cos A}{2}}

Important: Again, the ±\pm sign depends on the quadrant of A2\frac{A}{2}. If A2\frac{A}{2} is in the first or fourth quadrant, cosA2\cos\frac{A}{2} is positive; if it's in the second or third, it's negative.

Example: Let A=60A = 60^\circ. Then cosA=12\cos A = \frac{1}{2}, and cos30=cos602=1+122=34=32\cos 30^\circ = \cos\frac{60^\circ}{2} = \sqrt{\frac{1 + \frac{1}{2}}{2}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} (positive root since 3030^\circ is in the first quadrant).

3. Sub-Multiple Angle Formulas

The term "sub-multiple angles" simply refers to the use of half-angle formulas, but with a slight change in perspective. Instead of considering A2\frac{A}{2} as half of AA, you can think of AA as a sub-multiple of 2A2A. Therefore, the same half-angle formulas are applied.

These are simply a restatement of the half-angle formulas. They are useful when you're given information about an angle and need to find the trigonometric functions of half that angle.

4. Converting Between Forms

Sometimes, you'll need to convert between different trigonometric forms to simplify an expression or solve an equation. This often involves using Pythagorean identities (sin2A+cos2A=1\sin^2 A + \cos^2 A = 1), or the double angle formulas in reverse.

Example: Suppose you have an expression involving sin3A\sin 3A and you need to express it in terms of cosA\cos A. You would first expand sin3A\sin 3A and then use the Pythagorean identity to convert the sine terms into cosine terms.

Tip: When dealing with half-angle formulas, always determine the quadrant of A2\frac{A}{2} before choosing the sign of the square root. This will save you from making sign errors.

Common Mistake: Forgetting the ±\pm sign in the half-angle formulas! Always remember to consider both positive and negative roots, and then determine the correct sign based on the quadrant of the angle.

JEE-Specific Tricks

In JEE Main, you'll often encounter problems that combine these formulas with other trigonometric concepts. Look for opportunities to apply these formulas to simplify complex expressions within a larger problem.

JEE Trick: Many JEE problems involve nested trigonometric functions. For instance, you might see sin(3sin1x)\sin(3\sin^{-1} x). In such cases, let sin1x=A\sin^{-1} x = A, so x=sinAx = \sin A. Then, the expression becomes sin3A\sin 3A, which you can expand using the triple angle formula. This substitution trick is extremely useful!

That's it for this lesson on triple and half angle formulas! Practice these formulas with a variety of problems, and you'll be well-prepared to tackle any JEE Main question that comes your way. Good luck!