Matrices Determinants6 min read

Adjoint Matrix Properties: Complete Guide for JEE

The adjoint (or adjugate) of a matrix is a fundamental concept in linear algebra with numerous applications in JEE Main and Advanced. For a square matrix \( A \) of order \( n \), the adjoint is defined as the transpose of the cofactor matrix:

matricesadjointpropertiesdeterminants

Adjoint Matrix Properties: Complete Guide for JEE

Introduction

The adjoint (or adjugate) of a matrix is a fundamental concept in linear algebra with numerous applications in JEE Main and Advanced. For a square matrix AA of order nn, the adjoint is defined as the transpose of the cofactor matrix: adj(A)=CT\operatorname{adj}(A) = C^T where CijC_{ij} is the cofactor of element aija_{ij}.

Part I: Fundamental Properties

1.1 The Defining Relationship

Aadj(A)=adj(A)A=AInA \cdot \operatorname{adj}(A) = \operatorname{adj}(A) \cdot A = |A| \cdot I_n

1.2 Determinant of Adjoint

adj(A)=An1|\operatorname{adj}(A)| = |A|^{n-1}

Proof: Aadj(A)=An    adj(A)=An1|A| \cdot |\operatorname{adj}(A)| = |A|^n \implies |\operatorname{adj}(A)| = |A|^{n-1}

1.3 Adjoint of Adjoint

adj(adj(A))=An2A\operatorname{adj}(\operatorname{adj}(A)) = |A|^{n-2} \cdot A

1.4 Product Rule (Note the Reversal)

adj(AB)=adj(B)adj(A)\operatorname{adj}(AB) = \operatorname{adj}(B) \cdot \operatorname{adj}(A)


Part II: Advanced Properties

2.1 Scalar Multiplication

adj(kA)=kn1adj(A)\operatorname{adj}(kA) = k^{n-1} \cdot \operatorname{adj}(A) Proof: (kA)adj(kA)=kAI=knAI(kA) \cdot \operatorname{adj}(kA) = |kA| \cdot I = k^n|A| \cdot I (kA)kn1adj(A)=knAadj(A)=knAI(kA) \cdot k^{n-1}\operatorname{adj}(A) = k^n \cdot A \cdot \operatorname{adj}(A) = k^n|A| \cdot I By uniqueness, adj(kA)=kn1adj(A)\operatorname{adj}(kA) = k^{n-1} \cdot \operatorname{adj}(A).

2.2 Transpose Property

adj(AT)=(adj(A))T\operatorname{adj}(A^T) = (\operatorname{adj}(A))^T

2.3 Inverse Relationships

For non-singular AA: adj(A1)=(adj(A))1=AA\operatorname{adj}(A^{-1}) = (\operatorname{adj}(A))^{-1} = \frac{A}{|A|}

2.4 Power Property

adj(Am)=(adj(A))m\operatorname{adj}(A^m) = (\operatorname{adj}(A))^m Proof by induction:

  • Base: adj(A1)=adj(A)\operatorname{adj}(A^1) = \operatorname{adj}(A)
  • Assuming adj(Am)=(adj(A))m\operatorname{adj}(A^m) = (\operatorname{adj}(A))^m, then: adj(Am+1)=adj(AAm)=adj(Am)adj(A)=(adj(A))madj(A)=(adj(A))m+1\operatorname{adj}(A^{m+1}) = \operatorname{adj}(A \cdot A^m) = \operatorname{adj}(A^m) \cdot \operatorname{adj}(A) = (\operatorname{adj}(A))^m \cdot \operatorname{adj}(A) = (\operatorname{adj}(A))^{m+1}

2.5 Determinant of Iterated Adjoint

For kk successive applications: adjk(A)=A(n1)k|\operatorname{adj}^k(A)| = |A|^{(n-1)^k} where adjk(A)\operatorname{adj}^k(A) means applying adjoint kk times.

2.6 Trace Relationship

tr(Aadj(A))=nA\operatorname{tr}(A \cdot \operatorname{adj}(A)) = n \cdot |A|

2.7 Rank Conditions

  • If rank(A)=n\operatorname{rank}(A) = n, then rank(adj(A))=n\operatorname{rank}(\operatorname{adj}(A)) = n
  • If rank(A)=n1\operatorname{rank}(A) = n-1, then rank(adj(A))=1\operatorname{rank}(\operatorname{adj}(A)) = 1
  • If rank(A)<n1\operatorname{rank}(A) < n-1, then adj(A)=O\operatorname{adj}(A) = O

Part III: JEE Previous Year Questions

PYQ 1 (JEE Main 2020)

If AA is a 3×33 \times 3 matrix with A=4|A| = 4, find adj(3A2)|\operatorname{adj}(3A^2)|.

Solution: adj(3A2)=3A231=3A22|\operatorname{adj}(3A^2)| = |3A^2|^{3-1} = |3A^2|^2 3A2=33A2=2716=432|3A^2| = 3^3 \cdot |A|^2 = 27 \cdot 16 = 432 Thus: adj(3A2)=4322=186624|\operatorname{adj}(3A^2)| = 432^2 = 186624

PYQ 2 (JEE Main 2021)

If AA is a 3×33 \times 3 matrix and adj(adj(adj(A)))=Ak|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(A)))| = |A|^k, find kk.

Solution: adj3(A)=A(31)3=A23=A8|\operatorname{adj}^3(A)| = |A|^{(3-1)^3} = |A|^{2^3} = |A|^8 Thus k=8k = 8.

PYQ 3 (JEE Advanced 2018)

Let PP be a 3×33 \times 3 matrix such that PT=2P+IP^T = 2P + I. If there exists QQ such that PQ=kIPQ = kI, find kQ\frac{k}{|Q|}.

Solution: From PT=2P+IP^T = 2P + I:

  • Transpose: P=2PT+IP = 2P^T + I
  • Substitute: P=2(2P+I)+I=4P+3IP = 2(2P + I) + I = 4P + 3I
  • Thus 3P=3I    P=I-3P = 3I \implies P = -I

If PQ=kIPQ = kI, then Q=kI    Q=kI-Q = kI \implies Q = -kI.
Then Q=kI=(k)3=k3|Q| = |-kI| = (-k)^3 = -k^3.
From PQ=kIPQ = kI: PQ=k3    (1)(k3)=k3|P||Q| = k^3 \implies (-1)(-k^3) = k^3 (consistent).

Thus: kQ=kk3=1k2\frac{k}{|Q|} = \frac{k}{-k^3} = -\frac{1}{k^2} Taking k=1k = 1 gives 11=1-\frac{1}{1} = -1.


Part IV: Quick Reference Table

PropertyFormulaCondition
Definition$ A \cdot \operatorname{adj}(A) =A
Determinant$\operatorname{adj}(A)
Double adjoint$ \operatorname{adj}(\operatorname{adj}(A)) =A
Scalar multiplicationadj(kA)=kn1adj(A)\operatorname{adj}(kA) = k^{n-1} \operatorname{adj}(A)Always
Transposeadj(AT)=(adj(A))T\operatorname{adj}(A^T) = (\operatorname{adj}(A))^TAlways
Productadj(AB)=adj(B)adj(A)\operatorname{adj}(AB) = \operatorname{adj}(B) \operatorname{adj}(A)Always
Poweradj(Am)=(adj(A))m\operatorname{adj}(A^m) = (\operatorname{adj}(A))^mAlways
Inverse$ \operatorname{adj}(A^{-1}) = A/A
Iterated determinant$\operatorname{adj}^k(A)
Trace$ \operatorname{tr}(A \operatorname{adj}(A)) = nA

Part V: Problem-Solving Strategy

Key Steps:

  1. Identify nn (order of matrix) — most formulas depend on it.
  2. Use given determinant — it simplifies many calculations.
  3. Break composite operations using properties like adj(AB)=adj(B)adj(A)\operatorname{adj}(AB) = \operatorname{adj}(B) \operatorname{adj}(A).
  4. Extract scalars carefully — remember the exponent is n1n-1.

Common Pitfalls:

  • Reverse order in product: adj(AB)=adj(B)adj(A)\operatorname{adj}(AB) = \operatorname{adj}(B) \operatorname{adj}(A)
  • Wrong exponent in adj(A)=An1|\operatorname{adj}(A)| = |A|^{n-1}
  • Scalar extraction: adj(kA)=kn1adj(A)\operatorname{adj}(kA) = k^{n-1} \operatorname{adj}(A), not knk^n
  • Confusing adj(A1)\operatorname{adj}(A^{-1}) with (adj(A))1(\operatorname{adj}(A))^{-1} (they are equal for invertible AA)

Practice Problems

  1. If AA is a 4×44 \times 4 matrix with A=3|A| = 3, find adj(2A3)|\operatorname{adj}(2A^3)|.
  2. For a 3×33 \times 3 invertible matrix AA, simplify adj(A1adj(A))\operatorname{adj}(A^{-1} \operatorname{adj}(A)).
  3. If B=adj(adj(A))B = \operatorname{adj}(\operatorname{adj}(A)) and A=2|A| = 2, find B|B| for n=3n = 3.
  4. Prove that adj(ATB)=adj(B)adj(AT)\operatorname{adj}(A^T B) = \operatorname{adj}(B) \operatorname{adj}(A^T).
  5. If AA is a 2×22 \times 2 matrix with A=5|A| = 5, find adj(adj(A))\operatorname{adj}(\operatorname{adj}(A)).

Summary

Mastering adjoint properties is crucial for JEE. The core insight is that most properties derive from the fundamental relationship Aadj(A)=AIA \cdot \operatorname{adj}(A) = |A| \cdot I. Remember the key patterns:

  • Powers of (n1)(n-1) appear in determinant formulas
  • Adjoint reverses the order in products (like the inverse)
  • Scalar extraction uses exponent n1n-1

With practice, these properties become powerful tools for solving complex matrix problems efficiently.

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Matrices Determinants PYQs