Adjoint Matrix Properties: Complete Guide for JEE
Introduction
The adjoint (or adjugate) of a matrix is a fundamental concept in linear algebra with numerous applications in JEE Main and Advanced. For a square matrix A of order n, the adjoint is defined as the transpose of the cofactor matrix:
adj(A)=CT
where Cij is the cofactor of element aij.
Part I: Fundamental Properties
1.1 The Defining Relationship
A⋅adj(A)=adj(A)⋅A=∣A∣⋅In
1.2 Determinant of Adjoint
∣adj(A)∣=∣A∣n−1
Proof:
∣A∣⋅∣adj(A)∣=∣A∣n⟹∣adj(A)∣=∣A∣n−1
1.3 Adjoint of Adjoint
adj(adj(A))=∣A∣n−2⋅A
1.4 Product Rule (Note the Reversal)
adj(AB)=adj(B)⋅adj(A)
Part II: Advanced Properties
2.1 Scalar Multiplication
adj(kA)=kn−1⋅adj(A)
Proof:
(kA)⋅adj(kA)=∣kA∣⋅I=kn∣A∣⋅I
(kA)⋅kn−1adj(A)=kn⋅A⋅adj(A)=kn∣A∣⋅I
By uniqueness, adj(kA)=kn−1⋅adj(A).
2.2 Transpose Property
adj(AT)=(adj(A))T
2.3 Inverse Relationships
For non-singular A:
adj(A−1)=(adj(A))−1=∣A∣A
2.4 Power Property
adj(Am)=(adj(A))m
Proof by induction:
- Base: adj(A1)=adj(A)
- Assuming adj(Am)=(adj(A))m, then:
adj(Am+1)=adj(A⋅Am)=adj(Am)⋅adj(A)=(adj(A))m⋅adj(A)=(adj(A))m+1
2.5 Determinant of Iterated Adjoint
For k successive applications:
∣adjk(A)∣=∣A∣(n−1)k
where adjk(A) means applying adjoint k times.
2.6 Trace Relationship
tr(A⋅adj(A))=n⋅∣A∣
2.7 Rank Conditions
- If rank(A)=n, then rank(adj(A))=n
- If rank(A)=n−1, then rank(adj(A))=1
- If rank(A)<n−1, then adj(A)=O
Part III: JEE Previous Year Questions
PYQ 1 (JEE Main 2020)
If A is a 3×3 matrix with ∣A∣=4, find ∣adj(3A2)∣.
Solution:
∣adj(3A2)∣=∣3A2∣3−1=∣3A2∣2
∣3A2∣=33⋅∣A∣2=27⋅16=432
Thus:
∣adj(3A2)∣=4322=186624
PYQ 2 (JEE Main 2021)
If A is a 3×3 matrix and ∣adj(adj(adj(A)))∣=∣A∣k, find k.
Solution:
∣adj3(A)∣=∣A∣(3−1)3=∣A∣23=∣A∣8
Thus k=8.
PYQ 3 (JEE Advanced 2018)
Let P be a 3×3 matrix such that PT=2P+I. If there exists Q such that PQ=kI, find ∣Q∣k.
Solution:
From PT=2P+I:
- Transpose: P=2PT+I
- Substitute: P=2(2P+I)+I=4P+3I
- Thus −3P=3I⟹P=−I
If PQ=kI, then −Q=kI⟹Q=−kI.
Then ∣Q∣=∣−kI∣=(−k)3=−k3.
From PQ=kI: ∣P∣∣Q∣=k3⟹(−1)(−k3)=k3 (consistent).
Thus:
∣Q∣k=−k3k=−k21
Taking k=1 gives −11=−1.
Part IV: Quick Reference Table
| Property | Formula | Condition |
|---|
| Definition | $ A \cdot \operatorname{adj}(A) = | A |
| Determinant | $ | \operatorname{adj}(A) |
| Double adjoint | $ \operatorname{adj}(\operatorname{adj}(A)) = | A |
| Scalar multiplication | adj(kA)=kn−1adj(A) | Always |
| Transpose | adj(AT)=(adj(A))T | Always |
| Product | adj(AB)=adj(B)adj(A) | Always |
| Power | adj(Am)=(adj(A))m | Always |
| Inverse | $ \operatorname{adj}(A^{-1}) = A/ | A |
| Iterated determinant | $ | \operatorname{adj}^k(A) |
| Trace | $ \operatorname{tr}(A \operatorname{adj}(A)) = n | A |
Part V: Problem-Solving Strategy
Key Steps:
- Identify n (order of matrix) — most formulas depend on it.
- Use given determinant — it simplifies many calculations.
- Break composite operations using properties like adj(AB)=adj(B)adj(A).
- Extract scalars carefully — remember the exponent is n−1.
Common Pitfalls:
- Reverse order in product: adj(AB)=adj(B)adj(A)
- Wrong exponent in ∣adj(A)∣=∣A∣n−1
- Scalar extraction: adj(kA)=kn−1adj(A), not kn
- Confusing adj(A−1) with (adj(A))−1 (they are equal for invertible A)
Practice Problems
- If A is a 4×4 matrix with ∣A∣=3, find ∣adj(2A3)∣.
- For a 3×3 invertible matrix A, simplify adj(A−1adj(A)).
- If B=adj(adj(A)) and ∣A∣=2, find ∣B∣ for n=3.
- Prove that adj(ATB)=adj(B)adj(AT).
- If A is a 2×2 matrix with ∣A∣=5, find adj(adj(A)).
Summary
Mastering adjoint properties is crucial for JEE. The core insight is that most properties derive from the fundamental relationship A⋅adj(A)=∣A∣⋅I. Remember the key patterns:
- Powers of (n−1) appear in determinant formulas
- Adjoint reverses the order in products (like the inverse)
- Scalar extraction uses exponent n−1
With practice, these properties become powerful tools for solving complex matrix problems efficiently.