Sequences Series7 min read

Method of Differences (V-N Method): The Telescoping Series Shortcut

The Method of Differences, also called the V-N Method or Telescoping Summation, is a powerful technique for summing series where terms cancel in succession. It's frequently tested in JEE Main (1-2 questions/year) and transforms seemingly complex series into simple evaluations.

sequencesseriesdifferencessummation

Method of Differences (V-N Method): The Telescoping Series Shortcut

Master the Art of Collapsing Series for JEE Main


1. Introduction

The Method of Differences, also called the V-N Method or Telescoping Summation, is a powerful technique for summing series where terms cancel in succession. It's frequently tested in JEE Main (1-2 questions/year) and transforms seemingly complex series into simple evaluations.

Core Insight: If each term can be expressed as Tr=f(r)f(r+1)T_r = f(r) - f(r+1), then the sum "telescopes" to f(1)f(n+1)f(1) - f(n+1).


2. Fundamental Principle

2.1 Basic Telescoping

If Tk=akak+1T_k = a_k - a_{k+1}, then: k=1nTk=(a1a2)+(a2a3)++(anan+1)=a1an+1\sum_{k=1}^{n} T_k = (a_1 - a_2) + (a_2 - a_3) + \dots + (a_n - a_{n+1}) = a_1 - a_{n+1} Most intermediate terms cancel, leaving only the first and last.

2.2 Standard Form Recognition

The method applies when you can rewrite the general term as a difference. Common patterns include:

  • Fractional terms with products in denominator
  • Square root expressions (after rationalization)
  • Factorial combinations
  • Trigonometric terms using angle addition formulas

3. Key Formulas and Techniques

3.1 Partial Fractions Approach

For 1P(r)Q(r)\frac{1}{P(r)Q(r)} where P(r)P(r) and Q(r)Q(r) are linear and Q(r)=P(r+1)Q(r) = P(r+1):

General Case:
If denominators form an arithmetic progression with common difference dd: 1arar+1=1d(1ar1ar+1)\frac{1}{a_r a_{r+1}} = \frac{1}{d} \left( \frac{1}{a_r} - \frac{1}{a_{r+1}} \right) where ar+1ar=da_{r+1} - a_r = d.

Examples:

  1. 1r(r+1)=1r1r+1\frac{1}{r(r+1)} = \frac{1}{r} - \frac{1}{r+1} (here d=1d=1)
  2. 1(2r1)(2r+1)=12(12r112r+1)\frac{1}{(2r-1)(2r+1)} = \frac{1}{2} \left( \frac{1}{2r-1} - \frac{1}{2r+1} \right) (here d=2d=2)

3.2 Higher Order Products

For three consecutive factors: 1arar+1ar+2=12d(1arar+11ar+1ar+2)\frac{1}{a_r a_{r+1} a_{r+2}} = \frac{1}{2d} \left( \frac{1}{a_r a_{r+1}} - \frac{1}{a_{r+1} a_{r+2}} \right)

3.3 Square Root Rationalization

1a+b=baba\frac{1}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{b} - \sqrt{a}}{b - a} If ba=db-a = d (constant), this becomes telescoping.

3.4 Factorial Series

r(r+1)!=1r!1(r+1)!\frac{r}{(r+1)!} = \frac{1}{r!} - \frac{1}{(r+1)!} r2(r+1)!=1(r1)!1(r+1)!(r1)\frac{r^2}{(r+1)!} = \frac{1}{(r-1)!} - \frac{1}{(r+1)!} \quad (r \ge 1)


4. Common Telescoping Patterns

Series TypeGeneral Term TrT_rPartial Fraction/Telescoping Form
1r(r+1)\sum \frac{1}{r(r+1)}1r(r+1)\frac{1}{r(r+1)}1r1r+1\frac{1}{r} - \frac{1}{r+1}
1r(r+2)\sum \frac{1}{r(r+2)}1r(r+2)\frac{1}{r(r+2)}12(1r1r+2)\frac{1}{2}\left(\frac{1}{r} - \frac{1}{r+2}\right)
1(2r1)(2r+1)\sum \frac{1}{(2r-1)(2r+1)}1(2r1)(2r+1)\frac{1}{(2r-1)(2r+1)}12(12r112r+1)\frac{1}{2}\left(\frac{1}{2r-1} - \frac{1}{2r+1}\right)
1r(r+1)(r+2)\sum \frac{1}{r(r+1)(r+2)}1r(r+1)(r+2)\frac{1}{r(r+1)(r+2)}12[1r(r+1)1(r+1)(r+2)]\frac{1}{2}\left[\frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)}\right]
2r+1r2(r+1)2\sum \frac{2r+1}{r^2(r+1)^2}2r+1r2(r+1)2\frac{2r+1}{r^2(r+1)^2}1r21(r+1)2\frac{1}{r^2} - \frac{1}{(r+1)^2}
1r+r+1\sum \frac{1}{\sqrt{r}+\sqrt{r+1}}1r+r+1\frac{1}{\sqrt{r}+\sqrt{r+1}}r+1r\sqrt{r+1} - \sqrt{r}

5. Step-by-Step Methodology

Step 1: Analyze the General Term

Identify if TrT_r involves products, square roots, or factorials that suggest telescoping.

Step 2: Apply Appropriate Transformation

  • For fractions: Use partial fractions
  • For square roots: Rationalize
  • For factorials: Use factorial identities
  • For trigonometric: Use sum-to-product formulas

Step 3: Write Out First Few Terms

Verify the cancellation pattern by expanding: Sn=[f(1)f(2)]+[f(2)f(3)]++[f(n)f(n+1)]S_n = [f(1)-f(2)] + [f(2)-f(3)] + \dots + [f(n)-f(n+1)]

Step 4: Compute the Sum

Sn=f(1)f(n+1)S_n = f(1) - f(n+1)

Step 5: Simplify the Result

Express in simplest algebraic form.


6. Worked Examples

Example 1: Basic Product Series

Problem: Sum of 113+135++1(2n1)(2n+1)\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}

Solution: Tr=1(2r1)(2r+1)=12(12r112r+1)T_r = \frac{1}{(2r-1)(2r+1)} = \frac{1}{2} \left( \frac{1}{2r-1} - \frac{1}{2r+1} \right) Sn=12[(113)+(1315)++(12n112n+1)]S_n = \frac{1}{2} \left[ \left(1 - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right) \right] Sn=12(112n+1)=n2n+1S_n = \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right) = \frac{n}{2n+1}


Example 2: Square Root Series

Problem: 11+2+12+3++199+100\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}

Solution: Rationalize each term: 1r+r+1=r+1r(r+1)r=r+1r\frac{1}{\sqrt{r}+\sqrt{r+1}} = \frac{\sqrt{r+1}-\sqrt{r}}{(r+1)-r} = \sqrt{r+1} - \sqrt{r} S=(21)+(32)++(10099)=1001=9S = (\sqrt{2}-\sqrt{1}) + (\sqrt{3}-\sqrt{2}) + \dots + (\sqrt{100}-\sqrt{99}) = \sqrt{100} - \sqrt{1} = 9


Example 3: Three-Factor Product

Problem: 1123+1234++1n(n+1)(n+2)\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \dots + \frac{1}{n(n+1)(n+2)}

Solution: 1r(r+1)(r+2)=12[1r(r+1)1(r+1)(r+2)]\frac{1}{r(r+1)(r+2)} = \frac{1}{2} \left[ \frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)} \right] Sn=12[(112123)+(123134)+]S_n = \frac{1}{2} \left[ \left( \frac{1}{1\cdot 2} - \frac{1}{2\cdot 3} \right) + \left( \frac{1}{2\cdot 3} - \frac{1}{3\cdot 4} \right) + \dots \right] Sn=12(121(n+1)(n+2))=1412(n+1)(n+2)S_n = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{(n+1)(n+2)} \right) = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}


7. JEE Main PYQs with Detailed Solutions

PYQ 1 (JEE Main 2021)

Problem: 1321+1521++120121=?\frac{1}{3^2-1} + \frac{1}{5^2-1} + \dots + \frac{1}{201^2-1} = ?

Solution: Tr=1(2r+1)21=14r(r+1)=14(1r1r+1)T_r = \frac{1}{(2r+1)^2-1} = \frac{1}{4r(r+1)} = \frac{1}{4} \left( \frac{1}{r} - \frac{1}{r+1} \right) Here 2r+12r+1 goes from 3 to 201 ⇒ rr from 1 to 100. S=14[(112)+(1213)++(11001101)]S = \frac{1}{4} \left[ \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{100} - \frac{1}{101}\right) \right] S=14(11101)=25101S = \frac{1}{4} \left( 1 - \frac{1}{101} \right) = \frac{25}{101}


PYQ 2 (JEE Main 2023)

Problem: Given a5=2a7a_5 = 2a_7 and a11=18a_{11} = 18 for an AP. Find 12k=10171ak+ak+112\sum_{k=10}^{17} \frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}}

Solution: Let AP be an=a1+(n1)da_n = a_1 + (n-1)d.

From a5=2a7a_5 = 2a_7: a1+4d=2(a1+6d)a1=8da_1 + 4d = 2(a_1 + 6d) ⇒ a_1 = -8d
From a11=18a_{11} = 18: 8d+10d=18d=9,a1=72-8d + 10d = 18 ⇒ d = 9, a_1 = -72

Rationalize: 1ak+ak+1=ak+1akd\frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}} = \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{d} k=1017=1d(a18a10)=19(819)=69=23\sum_{k=10}^{17} = \frac{1}{d} (\sqrt{a_{18}} - \sqrt{a_{10}}) = \frac{1}{9} (\sqrt{81} - \sqrt{9}) = \frac{6}{9} = \frac{2}{3} Multiply by 12: 12×23=812 \times \frac{2}{3} = 8

Answer: 8


PYQ 3 (JEE Main 2019)

Problem: Sum of first 10 terms of 31222+52232+73242+\frac{3}{1^2\cdot 2^2} + \frac{5}{2^2\cdot 3^2} + \frac{7}{3^2\cdot 4^2} + \dots

Solution: Tr=2r+1r2(r+1)2=1r21(r+1)2T_r = \frac{2r+1}{r^2(r+1)^2} = \frac{1}{r^2} - \frac{1}{(r+1)^2} S10=(114)+(1419)++(11001121)=11121=120121S_{10} = \left(1 - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{9}\right) + \dots + \left(\frac{1}{100} - \frac{1}{121}\right) = 1 - \frac{1}{121} = \frac{120}{121}


8. Advanced Applications

8.1 Trigonometric Telescoping

Using product-to-sum identities: k=1nsin(kx)sin((k+1)x)=12k=1n[cosxcos((2k+1)x)]\sum_{k=1}^{n} \sin(kx) \sin((k+1)x) = \frac{1}{2} \sum_{k=1}^{n} [\cos x - \cos((2k+1)x)] This can telescope if further manipulated.

8.2 Combined AP-GP Series

Sometimes rewriting helps: r=1nrar1=dda(r=1nar1)\sum_{r=1}^{n} r \cdot a^{r-1} = \frac{d}{da} \left( \sum_{r=1}^{n} a^{r-1} \right) Differentiate the geometric series formula.

8.3 Nested Summations

For double sums, interchange order or use: i=1nj=1if(j)=j=1n(nj+1)f(j)\sum_{i=1}^{n} \sum_{j=1}^{i} f(j) = \sum_{j=1}^{n} (n-j+1) f(j)


9. Special Cases and Tricks

9.1 When Denominators Aren't Consecutive

For 1r(r+k)\frac{1}{r(r+k)} where k>1k>1: 1r(r+k)=1k(1r1r+k)\frac{1}{r(r+k)} = \frac{1}{k} \left( \frac{1}{r} - \frac{1}{r+k} \right) The sum doesn't fully telescope but has only kk surviving terms.

9.2 Sum of Reciprocals of Products of AP Terms

General formula for ar=a+(r1)da_r = a + (r-1)d: r=1n1arar+1ar+m1=1(m1)d(1a1a2am11an+1an+2an+m1)\sum_{r=1}^{n} \frac{1}{a_r a_{r+1} \dots a_{r+m-1}} = \frac{1}{(m-1)d} \left( \frac{1}{a_1 a_2 \dots a_{m-1}} - \frac{1}{a_{n+1} a_{n+2} \dots a_{n+m-1}} \right)

9.3 Using Known Sums

Sometimes it's easier to compute r=1nTr\sum_{r=1}^{n} T_r by finding r=1nr\sum_{r=1}^{n} r, r=1nr2\sum_{r=1}^{n} r^2, etc., and combining.


10. Common Errors and Verification Tips

Common Mistakes:

  1. Incorrect partial fractions: Always verify by recombining.
  2. Misidentifying dd: Ensure you compute ar+1ara_{r+1} - a_r correctly.
  3. Off-by-one errors: Check first and last terms explicitly.
  4. Assuming telescoping when it doesn't occur: Write out 3-4 terms to verify cancellation.

Verification:

  • For small nn (like n=3n=3), compute both direct sum and telescoped form.
  • Check limiting behavior as nn \to \infty (if infinite series).
  • Ensure final expression has correct dimensions/units.

11. Practice Problems

Level 1:

  1. r=1n1r(r+3)\sum_{r=1}^{n} \frac{1}{r(r+3)}
  2. r=1n1r+r+2\sum_{r=1}^{n} \frac{1}{\sqrt{r} + \sqrt{r+2}}

Level 2: 3. r=1nr(r+1)!\sum_{r=1}^{n} \frac{r}{(r+1)!} 4. r=1n2r+1r2(r+1)2\sum_{r=1}^{n} \frac{2r+1}{r^2(r+1)^2}

Level 3 (JEE): 5. If Sn=r=1n1r(r+1)(r+2)S_n = \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}, find limnSn\lim_{n\to\infty} S_n 6. r=1n3r21(r2r+1)(r2+r+1)\sum_{r=1}^{n} \frac{3r^2 - 1}{(r^2 - r + 1)(r^2 + r + 1)}


12. Quick Reference Guide

PatternTransformationSum Formula
1r(r+1)\frac{1}{r(r+1)}1r1r+1\frac{1}{r} - \frac{1}{r+1}11n+11 - \frac{1}{n+1}
1r(r+k)\frac{1}{r(r+k)}1k(1r1r+k)\frac{1}{k}\left(\frac{1}{r} - \frac{1}{r+k}\right)1k(1+12++1kj=1k1n+j)\frac{1}{k}\left(1 + \frac{1}{2} + \dots + \frac{1}{k} - \sum_{j=1}^{k} \frac{1}{n+j}\right)
1r+r+1\frac{1}{\sqrt{r}+\sqrt{r+1}}r+1r\sqrt{r+1} - \sqrt{r}n+11\sqrt{n+1} - 1
2r+1r2(r+1)2\frac{2r+1}{r^2(r+1)^2}1r21(r+1)2\frac{1}{r^2} - \frac{1}{(r+1)^2}11(n+1)21 - \frac{1}{(n+1)^2}
r(r+1)!\frac{r}{(r+1)!}1r!1(r+1)!\frac{1}{r!} - \frac{1}{(r+1)!}11(n+1)!1 - \frac{1}{(n+1)!}

13. Final Strategy for JEE Main

  1. Recognize the pattern within 30 seconds.
  2. Apply partial fractions or rationalization immediately.
  3. Write 2-3 terms to confirm telescoping.
  4. Compute sum using first minus last surviving term.
  5. Simplify and box the answer.

Time Allocation: Such problems should take 2-3 minutes maximum.


Mastering telescoping series turns one of the most daunting topics into a quick, reliable point-scorer. Practice until recognition becomes instantaneous!

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Sequences Series PYQs