Trigonometry10 min read

Range and Max/Min

Finding the range or extreme values of trigonometric expressions is a high-frequency JEE theme. While calculus provides a general method, it's often inefficient. This article equips you with a pattern-recognition toolkit to solve these problems in seconds by identifying standard forms and applying...

trigonometryrangemaxima-minimaoptimization

Range and Max/Min — The Algebraic Playbook

"Before you differentiate, ask: can I recognize the form?"

Introduction

Finding the range or extreme values of trigonometric expressions is a high-frequency JEE theme. While calculus provides a general method, it's often inefficient. This article equips you with a pattern-recognition toolkit to solve these problems in seconds by identifying standard forms and applying pre-derived results.


The Core Toolkit: Six Essential Forms

Form 1: The Linear Combination asinθ+bcosθa\sin\theta + b\cos\theta

The Fundamental Result: a2+b2  asinθ+bcosθ  a2+b2\boxed{-\sqrt{a^2 + b^2} \ \leq \ a\sin\theta + b\cos\theta \ \leq \ \sqrt{a^2 + b^2}} Maximum: a2+b2\sqrt{a^2 + b^2}, Minimum: a2+b2-\sqrt{a^2 + b^2}

Why it works: It can be rewritten as Rsin(θ+ϕ)R\sin(\theta + \phi) or Rcos(θα)R\cos(\theta - \alpha), where R=a2+b2R = \sqrt{a^2 + b^2}, and the sine/cosine function is bounded by ±1.

Common Variants:

  • asinθ+bcosθ+ca\sin\theta + b\cos\theta + c: Range is [ca2+b2, c+a2+b2]\left[c - \sqrt{a^2+b^2},\ c + \sqrt{a^2+b^2}\right]
  • asinθbcosθa\sin\theta - b\cos\theta: Same formula, treat as asinθ+(b)cosθa\sin\theta + (-b)\cos\theta.

Form 2: The "tan² + cot²" Type (AM-GM Application)

The Result: For a2tan2θ+b2cot2θa^2\tan^2\theta + b^2\cot^2\theta (where a,b>0a, b > 0, and θ\theta avoids multiples of π/2\pi/2), Minimum value=2ab\boxed{\text{Minimum value} = 2|ab|} Equality occurs when a2tan2θ=b2cot2θa^2\tan^2\theta = b^2\cot^2\theta, i.e., tan4θ=b2/a2\tan^4\theta = b^2/a^2 or tan2θ=b/a\tan^2\theta = |b/a|.

Derivation (AM ≥ GM): a2tan2θ+b2cot2θ2a2tan2θb2cot2θ=abtan2θcot2θ=ab\frac{a^2\tan^2\theta + b^2\cot^2\theta}{2} \geq \sqrt{a^2\tan^2\theta \cdot b^2\cot^2\theta} = |ab| \sqrt{\tan^2\theta \cdot \cot^2\theta} = |ab| Multiply by 2: a2tan2θ+b2cot2θ2aba^2\tan^2\theta + b^2\cot^2\theta \geq 2|ab|.


Form 3: The "sec² + cosec²" Type

The Result: For asec2θ+bcsc2θa\sec^2\theta + b\csc^2\theta (with a,b>0a, b > 0, θ\theta not a multiple of π/2\pi/2), Minimum value=(a+b)2\boxed{\text{Minimum value} = (\sqrt{a} + \sqrt{b})^2} Equality occurs when asec2θ=bcsc2θa\sec^2\theta = b\csc^2\theta, leading to tan2θ=b/a\tan^2\theta = \sqrt{b/a} (after simplification).


Form 4: Quadratic in sinθ\sin\theta or cosθ\cos\theta

Standard Strategy: Use the substitution t=sinθt = \sin\theta (or cosθ\cos\theta), where t[1,1]t \in [-1, 1]. The problem reduces to finding the range of a quadratic f(t)=At2+Bt+Cf(t) = At^2 + Bt + C over [1,1][-1, 1].

Procedure:

  1. Find the vertex t0=B/(2A)t_0 = -B/(2A).
  2. Evaluate f(t)f(t) at t=1,1,and t0t = -1, 1, \text{and } t_0 (if t0[1,1]t_0 \in [-1, 1]).

Form 5: Rational Functions of sinθ\sin\theta or cosθ\cos\theta

For f(θ)=Asinθ+BCsinθ+Df(\theta) = \dfrac{A\sin\theta + B}{C\sin\theta + D} or similar forms with cosθ\cos\theta.

Strategy: Substitute t=sinθt = \sin\theta (t[1,1]t \in [-1, 1]). The function becomes f(t)=At+BCt+Df(t) = \dfrac{At + B}{Ct + D}. Its range on [1,1][-1, 1] is typically found by checking endpoints and ensuring the denominator doesn't vanish. Alternatively, solve y=f(t)y = f(t) for tt and impose 1t1-1 \leq t \leq 1.


Form 6: Symmetric Polynomials in sin2θ\sin^2\theta and cos2θ\cos^2\theta

Key Substitution: Let u=sin2θu = \sin^2\theta. Then cos2θ=1u\cos^2\theta = 1-u, and u[0,1]u \in [0, 1]. Convert the expression to a polynomial in uu and find its range on [0,1][0, 1].

Important Special Cases: sin4θ+cos4θ=12sin2θcos2θ=112sin22θ[12,1]sin6θ+cos6θ=13sin2θcos2θ=134sin22θ[14,1]\begin{aligned} \sin^4\theta + \cos^4\theta &= 1 - 2\sin^2\theta\cos^2\theta = 1 - \frac{1}{2}\sin^2 2\theta \in \left[\frac{1}{2}, 1\right] \\ \sin^6\theta + \cos^6\theta &= 1 - 3\sin^2\theta\cos^2\theta = 1 - \frac{3}{4}\sin^2 2\theta \in \left[\frac{1}{4}, 1\right] \end{aligned}


Strategic Problem-Solving Framework

Use this flowchart to select the right tool instantly.


Applied Mastery: JEE Problems Decoded

Problem Type 1: Direct Linear Combination

Question (JEE Main 2021): Number of integral 'k' for which 3sinx+4cosx=k+13\sin x + 4\cos x = k + 1 has a solution.

Solution:

  1. Form: asinx+bcosxa\sin x + b\cos x with a=3,b=4a=3, b=4.
  2. Range: [32+42,32+42]=[5,5][-\sqrt{3^2+4^2}, \sqrt{3^2+4^2}] = [-5, 5].
  3. Condition: k+1[5,5]6k4k+1 \in [-5, 5] \Rightarrow -6 \leq k \leq 4.
  4. Integral k: 6,5,,4-6, -5, \ldots, 411 values.

Key Insight: The problem tests both the range formula and counting integers in an interval.


Problem Type 2: AM-GM for tan² + cot²

Question: Minimum value of 9tan2θ+4cot2θ9\tan^2\theta + 4\cot^2\theta.

Solution:

  1. Form: a2tan2θ+b2cot2θa^2\tan^2\theta + b^2\cot^2\theta with a=3,b=2a=3, b=2.
  2. Apply Formula: Minimum = 2×3×2=122 \times 3 \times 2 = \boxed{12}.

Verification: Equality when 9tan2θ=4cot2θtan4θ=4/9tan2θ=2/39\tan^2\theta = 4\cot^2\theta \Rightarrow \tan^4\theta = 4/9 \Rightarrow \tan^2\theta = 2/3.


Problem Type 3: Quadratic Transformation

Question (JEE Main 2022): Let f(x)=3sin4x+10sin2xcos2x+7cos4xf(x) = 3\sin^4 x + 10\sin^2 x \cos^2 x + 7\cos^4 x. Find max-min difference.

Solution:

  1. Substitute: Let t=sin2xcos2x=1t, t[0,1]t = \sin^2 x \Rightarrow \cos^2 x = 1-t, \ t \in [0,1]. f=3t2+10t(1t)+7(1t)2f = 3t^2 + 10t(1-t) + 7(1-t)^2
  2. Simplify: f=3t2+10t10t2+714t+7t2=74tf = 3t^2 + 10t - 10t^2 + 7 - 14t + 7t^2 = 7 - 4t.
  3. Range on [0,1]: Linear decreasing function.
    • Max at t=0t=0: f=7f=7
    • Min at t=1t=1: f=3f=3
  4. Difference: 73=47 - 3 = \boxed{4}.

Problem Type 4: Rational Function (Bounded Variable)

Question: Range of f(θ)=132cosθf(\theta) = \dfrac{1}{3 - 2\cos\theta}.

Solution:

  1. Bounded Variable: cosθ[1,1]\cos\theta \in [-1, 1].
  2. Denominator Range: 32cosθ[32(1),32(1)]=[1,5]3 - 2\cos\theta \in [3-2(1), 3-2(-1)] = [1, 5].
  3. Reciprocal Range: f(θ)[15,1]f(\theta) \in \left[\frac{1}{5}, 1\right].

Check Continuity: Denominator is positive, so ff is continuous, and the range is the closed interval [1/5,1][1/5, 1].


Problem Type 5: Constrained Optimization (Advanced)

Question (JEE Advanced 2019): Minimum of sec4α+csc4α\sec^4\alpha + \csc^4\alpha, α(0,π/2)\alpha \in (0, \pi/2).

Solution (Elegant Approach):

  1. Use known identity: sec2α+csc2α=sec2αcsc2α=4sin22α\sec^2\alpha + \csc^2\alpha = \sec^2\alpha\csc^2\alpha = \dfrac{4}{\sin^2 2\alpha}. Minimum occurs when sin2α=1\sin 2\alpha = 1 (i.e., α=π/4\alpha = \pi/4), giving sec2α+csc2α=4\sec^2\alpha + \csc^2\alpha = 4.
  2. Let x=sec2α,y=csc2αx = \sec^2\alpha, y = \csc^2\alpha. We have x+y=4x + y = 4 and need to minimize x2+y2x^2 + y^2.
  3. For fixed sum, sum of squares is minimized when x=yx = y: x=y=2x = y = 2.
  4. Minimum value: x2+y2=22+22=8x^2 + y^2 = 2^2 + 2^2 = \boxed{8}.

Alternative (Direct substitution): At α=π/4\alpha = \pi/4, secα=cscα=2\sec\alpha = \csc\alpha = \sqrt{2}, so sec4α+csc4α=4+4=8\sec^4\alpha + \csc^4\alpha = 4 + 4 = 8.


Quick Reference: Special Ranges & Minima

ExpressionRange / MinimumCondition / Note
asinθ+bcosθa\sin\theta + b\cos\theta[a2+b2,a2+b2][-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}]
asinθ+bcosθ+ca\sin\theta + b\cos\theta + c[ca2+b2,c+a2+b2][c-\sqrt{a^2+b^2}, c+\sqrt{a^2+b^2}]
a2tan2θ+b2cot2θa^2\tan^2\theta + b^2\cot^2\thetamin=2ab\min = 2\|ab\|θnπ/2\theta \neq n\pi/2
asec2θ+bcsc2θa\sec^2\theta + b\csc^2\thetamin=(a+b)2\min = (\sqrt{a}+\sqrt{b})^2θnπ/2\theta \neq n\pi/2
sin4θ+cos4θ\sin^4\theta + \cos^4\theta[1/2,1][1/2, 1]
sin6θ+cos6θ\sin^6\theta + \cos^6\theta[1/4,1][1/4, 1]
sin2θcos2θ\sin^2\theta\cos^2\theta[0,1/4][0, 1/4]Max at θ=π/4\theta = \pi/4
1a+bcosθ\frac{1}{a + b\cos\theta} ( a>ba > \|b\| )[1a+b,1ab]\left[\frac{1}{a+\|b\|}, \frac{1}{a-\|b\|}\right]Continuous range
sinθ+3cosθ\sin\theta + \sqrt{3}\cos\theta[2,2][-2, 2]Common instance

Common Pitfalls & Safeguards

Pitfall 1: Ignoring the Domain

Example: Finding the minimum of tan2θ+cot2θ\tan^2\theta + \cot^2\theta over θ(0,π/2)\theta \in (0, \pi/2) is valid. Over θR\theta \in \mathbb{R}, the function is undefined at multiples of π/2\pi/2, and the "minimum" of 2 is never actually attained for a continuous domain.

Safeguard: Always state the domain explicitly in your answer. If the domain excludes points where the expression is defined, the range might be an open interval.

Pitfall 2: Misapplying AM-GM

AM-GM requires non-negative terms. For tan2θ+cot2θ\tan^2\theta + \cot^2\theta, this holds. For sinθ+cscθ\sin\theta + \csc\theta, it does not always hold because sinθ\sin\theta can be negative. AM-GM applies only for θ\theta in intervals where sinθ>0\sin\theta > 0.

Safeguard: Check term positivity before applying AM-GM. If in doubt, use calculus or other methods.

Pitfall 3: Forgetting the ± in the Linear Formula

The range is ±a2+b2\pm\sqrt{a^2+b^2}. A common error is to write only the positive maximum.

Safeguard: Remember the sine/cosine function oscillates between -1 and +1.

Pitfall 4: Overlooking Simple Substitution

Before attempting complex manipulations, check if the expression simplifies dramatically with a substitution like u=sin2θu = \sin^2\theta or v=sinθ+cosθv = \sin\theta + \cos\theta.

Safeguard: Always spend 10 seconds looking for a simplifying substitution.


Practice Problems (Time Target: 2 minutes each)

  1. Find the range of f(θ)=5cosθ12sinθ+7f(\theta) = 5\cos\theta - 12\sin\theta + 7.

  2. Determine the minimum value of 25sec2θ+16csc2θ25\sec^2\theta + 16\csc^2\theta for θ(0,π/2)\theta \in (0, \pi/2).

  3. Find the maximum and minimum of sin2θ3sinθ+5\sin^2\theta - 3\sin\theta + 5. (Hint: Quadratic in sinθ\sin\theta).

  4. If y=2sinθ+34sinθ+5y = \dfrac{2\sin\theta + 3}{4\sin\theta + 5}, find its range.

  5. Prove that 8cos4θ8cos2θ+118\cos^4\theta - 8\cos^2\theta + 1 \geq -1 and find its maximum. (Hint: Substitute u=cos2θu = \cos^2\theta).


Final Strategic Summary

  1. Recognition is Key: The first 15 seconds should be spent matching the problem to one of the six forms.
  2. Linear Combination is #1: The a2+b2\sqrt{a^2+b^2} rule is the single most important result. Know it cold.
  3. AM-GM for Specific Forms: Use it confidently for tan2+cot2\tan^2+\cot^2 and sec2+csc2\sec^2+\csc^2 types, but verify term positivity.
  4. Substitution Simplifies: Reducing a trig problem to an algebraic problem in tt (where tt is bounded) is a powerful simplification.
  5. Calculus as a Last Resort: Only use differentiation if no standard form applies and substitution doesn't simplify sufficiently.
  6. Domain Dictates Range: The answer can change if the domain is restricted (e.g., θ[0,π/4]\theta \in [0, \pi/4] vs. R\mathbb{R}). Always note the domain.

By internalizing these forms and strategies, you transform range problems from tedious explorations into quick, confident identifications. This not only saves time but also drastically reduces computational errors.


"Efficiency in problem-solving doesn't mean cutting corners; it means knowing the straightest path to the answer."

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Trigonometry PYQs