Binomial Theorem12 min read

Cyclicity and Remainders: The Faster Way to Solve JEE Main Problems

Finding remainders is a frequently tested topic in JEE Main, appearing in 1-2 questions every year. While the Binomial Theorem approach (splitting $a^n$ into $(k \pm 1)^n$) is the standard method, Cyclicity offers a much faster "pattern-recognition" trick.

binomialcyclicityremaindersnumber-theory

Cyclicity and Remainders: The Faster Way to Solve JEE Main Problems

A Complete Guide with Shortcuts, Euler's Theorem & Previous Year Questions


Introduction

Finding remainders is a frequently tested topic in JEE Main, appearing in 1-2 questions every year. While the Binomial Theorem approach (splitting ana^n into (k±1)n(k \pm 1)^n) is the standard method, Cyclicity offers a much faster "pattern-recognition" trick.

This technique is particularly powerful when:

  • Finding the last digit (remainder when divided by 10)
  • The binomial split is not obvious
  • Dealing with tower powers like 32323232^{32^{32}}

Part 1: What is Cyclicity?

Definition

Cyclicity is the property where the powers of a number follow a repeating pattern of remainders when divided by a specific divisor.

For any expression an÷ka^n \div k, the remainders will eventually repeat. The number of terms in one such repeating set is called the cycle length.

Visual Example: Powers of 2 mod 7

Power2n2^nRemainder (mod 7)
122
244
381
4162 ← Pattern repeats
5324
6641

Cycle: {2, 4, 1} with Cycle Length = 3


Part 2: The Unit Digit (Remainder mod 10)

When the divisor is 10, the cyclicity depends entirely on the last digit of the base.

Master Table: Last Digit Cyclicity

Last DigitPattern (Powers 1, 2, 3, 4)Cycle Length
00, 0, 0, 01
11, 1, 1, 11
55, 5, 5, 51
66, 6, 6, 61
44, 6, 4, 62
99, 1, 9, 12
22, 4, 8, 64
33, 9, 7, 14
77, 9, 3, 14
88, 4, 2, 64

Quick Memory Tricks

  • Cycle of 1: Digits 0, 1, 5, 6 (always end in themselves)
  • Cycle of 2: Digits 4 and 9
    • 4: Odd power → 4, Even power → 6
    • 9: Odd power → 9, Even power → 1
  • Cycle of 4: Digits 2, 3, 7, 8 (REMEMBER: "2, 3, 7, 8 → Cycle 4, Wait!")

Part 3: Step-by-Step Cyclicity Technique

Algorithm to Find AnmodkA^n \mod k

Step 1: Simplify the Base Divide AA by kk and keep only the remainder.

Example: 37100÷537^{100} \div 5 becomes 2100÷52^{100} \div 5 (since 37mod5=237 \mod 5 = 2)

Step 2: Find the Pattern Calculate a1,a2,a3,a^1, a^2, a^3, \ldots divided by kk until the remainder repeats.

Step 3: Identify Cycle Length (CC) Count how many steps it took to repeat.

Step 4: Reduce the Power Find nmodCn \mod C (let's call this rr).

Step 5: Find the Answer The remainder is the rr-th term in your pattern.

Important: If r=0r = 0, take the last term of the cycle.


Part 4: Worked Examples

Example 1: Basic Cyclicity

Problem: Find the last digit of 72227^{222}

Solution:

  • Last digit of base = 7 → Cycle of 4
  • Pattern: 7, 9, 3, 1
  • 222mod4=2222 \mod 4 = 2
  • Answer: 9 (2nd term in pattern)

Example 2: Tower Powers - 323232÷732^{32^{32}} \div 7

Step 1: Simplify base: 32mod7=432 \mod 7 = 4

So we need 4(3232)mod74^{(32^{32})} \mod 7

Step 2: Find pattern of 4nmod74^n \mod 7:

  • 41mod7=44^1 \mod 7 = 4
  • 42mod7=16mod7=24^2 \mod 7 = 16 \mod 7 = 2
  • 43mod7=64mod7=14^3 \mod 7 = 64 \mod 7 = 1
  • 44mod7=44^4 \mod 7 = 4 ← Repeats

Step 3: Cycle = {4, 2, 1}, Length C=3C = 3

Step 4: Find 3232mod332^{32} \mod 3

Using Binomial: 32=33132 = 33 - 1 3232=(331)32(1)321(mod3)32^{32} = (33-1)^{32} \equiv (-1)^{32} \equiv 1 \pmod{3}

Step 5: Position 1 in cycle {4, 2, 1} → Answer: 4


Example 3: Last Two Digits (mod 100)

Problem: Find the last two digits of 71007^{100}

Solution: For mod 100, we use ϕ(100)=100×(112)×(115)=40\phi(100) = 100 \times (1-\frac{1}{2}) \times (1-\frac{1}{5}) = 40

Since gcd(7,100)=1\gcd(7, 100) = 1, by Euler's theorem: 7401(mod100)7^{40} \equiv 1 \pmod{100}

100=40×2+20100 = 40 \times 2 + 20

7100=(740)2×7201×720(mod100)7^{100} = (7^{40})^2 \times 7^{20} \equiv 1 \times 7^{20} \pmod{100}

Now calculate 720mod1007^{20} \mod 100:

  • 72=497^2 = 49
  • 74=24011(mod100)7^4 = 2401 \equiv 1 \pmod{100}

Wait, this means cycle is 4! 720=(74)515=1(mod100)7^{20} = (7^4)^5 \equiv 1^5 = 1 \pmod{100}

Answer: 01 (last two digits)


Part 5: Euler's Totient Theorem (Advanced Shortcut)

The Power Move

When gcd(a,k)=1\gcd(a, k) = 1 (coprime), you can skip finding the pattern manually:

aϕ(k)1(modk)\boxed{a^{\phi(k)} \equiv 1 \pmod{k}}

where ϕ(k)\phi(k) is Euler's Totient Function.

Calculating ϕ(k)\phi(k)

If k=p1a1p2a2pnank = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_n^{a_n}, then:

ϕ(k)=k(11p1)(11p2)(11pn)\phi(k) = k \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_n}\right)

Quick Reference Table

Divisor (kk)Prime Factorizationϕ(k)\phi(k)
7 (prime)776
9323^26
102×52 \times 54
11 (prime)111110
1222×32^2 \times 34
13 (prime)131312
213×73 \times 712
10022×522^2 \times 5^240

Fermat's Little Theorem (Special Case)

For prime pp: ϕ(p)=p1\phi(p) = p - 1

ap11(modp)a^{p-1} \equiv 1 \pmod{p}


Part 6: Binomial Theorem for Remainders

When ana^n can be written as (k±1)n(k \pm 1)^n for some multiple kk of the divisor:

Key Formulas

(km+1)n1(modm)(km + 1)^n \equiv 1 \pmod{m}

(km1)n(1)n(modm)(km - 1)^n \equiv (-1)^n \pmod{m}

(km+r)nrn(modm)(km + r)^n \equiv r^n \pmod{m}

When to Use Binomial vs Cyclicity

SituationBest Method
Base close to divisor multipleBinomial
Finding last digit (mod 10)Cyclicity
Tower powers (abca^{b^c})Cyclicity
Large power, prime divisorEuler/Fermat
Base and divisor share factorsCyclicity + careful analysis

Part 7: JEE Main Previous Year Questions (PYQs)

PYQ 1: JEE Main 2025 (7th April)

Question: The remainder when ((64)64)64((64)^{64})^{64} is divided by 7 is equal to _______.

Solution:

Method 1: Cyclicity

64mod7=164 \mod 7 = 1

Therefore: ((64)64)64(164)64=164=1(mod7)((64)^{64})^{64} \equiv (1^{64})^{64} = 1^{64} = 1 \pmod{7}

Answer: 1


PYQ 2: JEE Main 2024 (9th April)

Question: The remainder when 4282024428^{2024} is divided by 21 is _______.

Solution:

Method: Binomial Theorem

428=420+8=21×20+8428 = 420 + 8 = 21 \times 20 + 8

428202482024(mod21)428^{2024} \equiv 8^{2024} \pmod{21}

Now find 82024mod218^{2024} \mod 21:

Using ϕ(21)=ϕ(3×7)=2×6=12\phi(21) = \phi(3 \times 7) = 2 \times 6 = 12

Since gcd(8,21)=1\gcd(8, 21) = 1: 8121(mod21)8^{12} \equiv 1 \pmod{21}

2024=12×168+82024 = 12 \times 168 + 8

82024=(812)168×881×88(mod21)8^{2024} = (8^{12})^{168} \times 8^8 \equiv 1 \times 8^8 \pmod{21}

Calculate 88mod218^8 \mod 21:

  • 82=64=63+11(mod21)8^2 = 64 = 63 + 1 \equiv 1 \pmod{21}

Therefore: 88=(82)414=1(mod21)8^8 = (8^2)^4 \equiv 1^4 = 1 \pmod{21}

Answer: 1


PYQ 3: JEE Main 2024 (29th Jan)

Question: Remainder when 64323264^{32^{32}} is divided by 9 is equal to _______.

Solution:

64mod9=164 \mod 9 = 1 (since 64=63+1=7×9+164 = 63 + 1 = 7 \times 9 + 1)

64323213232=1(mod9)64^{32^{32}} \equiv 1^{32^{32}} = 1 \pmod{9}

Answer: 1


PYQ 4: JEE Main 2023 (Feb)

Question: The remainder when 19200+2320019^{200} + 23^{200} is divided by 49 is _______.

Solution:

Note: 19=21219 = 21 - 2 and 23=21+223 = 21 + 2

19200+23200=(212)200+(21+2)20019^{200} + 23^{200} = (21-2)^{200} + (21+2)^{200}

When we expand using binomial theorem, odd powers of 2 cancel:

=2[200C021200+200C2211984++200C2002200]= 2[{}^{200}C_0 \cdot 21^{200} + {}^{200}C_2 \cdot 21^{198} \cdot 4 + \ldots + {}^{200}C_{200} \cdot 2^{200}]

All terms with 21k21^k where k2k \geq 2 are divisible by 49=21×2+749 = 21 \times 2 + 7.

Actually, let's be more careful. 49=7249 = 7^2.

192(mod7)19 \equiv -2 \pmod{7} and 232(mod7)23 \equiv 2 \pmod{7}

19200+23200(2)200+2200=22200(mod7)19^{200} + 23^{200} \equiv (-2)^{200} + 2^{200} = 2 \cdot 2^{200} \pmod{7}

By Fermat: 261(mod7)2^6 \equiv 1 \pmod{7}

200=6×33+2200 = 6 \times 33 + 2, so 220022=4(mod7)2^{200} \equiv 2^2 = 4 \pmod{7}

24=81(mod7)2 \cdot 4 = 8 \equiv 1 \pmod{7}

For mod 49, use (21±2)200(21 \pm 2)^{200}: The answer involves careful binomial expansion mod 49.

Answer: 18


PYQ 5: JEE Main 2022

Question: The remainder when (11)1011+(1011)11(11)^{1011} + (1011)^{11} is divided by 9 is:

(a) 1   (b) 4   (c) 6   (d) 8

Solution:

For 111011mod911^{1011} \mod 9:

11mod9=211 \mod 9 = 2

Find cycle of 2nmod92^n \mod 9: 2, 4, 8, 7, 5, 1 → Cycle length = 6

1011mod6=31011 \mod 6 = 3

11101123=8(mod9)11^{1011} \equiv 2^3 = 8 \pmod{9}

For 101111mod91011^{11} \mod 9:

1011mod9=1+0+1+1=31011 \mod 9 = 1 + 0 + 1 + 1 = 3

32=90(mod9)3^2 = 9 \equiv 0 \pmod{9}

So 311=32×390(mod9)3^{11} = 3^2 \times 3^9 \equiv 0 \pmod{9}

Total: 8+0=8(mod9)8 + 0 = 8 \pmod{9}

Answer: (d) 8


PYQ 6: JEE Main 2023

Question: The remainder when (2023)2023(2023)^{2023} is divided by 35 is _______.

Solution:

2023=35×57+282023 = 35 \times 57 + 28, so 202328(mod35)2023 \equiv 28 \pmod{35}

We need 282023mod3528^{2023} \mod 35

ϕ(35)=ϕ(5×7)=4×6=24\phi(35) = \phi(5 \times 7) = 4 \times 6 = 24

Since gcd(28,35)=71\gcd(28, 35) = 7 \neq 1, we can't directly apply Euler's theorem.

Use CRT (Chinese Remainder Theorem):

Mod 5: 283(mod5)28 \equiv 3 \pmod{5}

  • 341(mod5)3^4 \equiv 1 \pmod{5} (Fermat)
  • 2023=4×505+32023 = 4 \times 505 + 3
  • 3202333=272(mod5)3^{2023} \equiv 3^3 = 27 \equiv 2 \pmod{5}

Mod 7: 280(mod7)28 \equiv 0 \pmod{7}

  • 2820230(mod7)28^{2023} \equiv 0 \pmod{7}

Find xx such that x2(mod5)x \equiv 2 \pmod{5} and x0(mod7)x \equiv 0 \pmod{7}

x=7kx = 7k where 7k2(mod5)7k \equiv 2 \pmod{5} 2k2(mod5)2k \equiv 2 \pmod{5} k1(mod5)k \equiv 1 \pmod{5} k=1k = 1 gives x=7x = 7

Answer: 7


PYQ 7: AIEEE 2009

Question: The remainder left out when 82n(62)2n+18^{2n} - (62)^{2n+1} is divided by 9 is:

(a) 7   (b) 8   (c) 0   (d) 2

Solution:

8=918 = 9 - 1, so 82n=(91)2n(1)2n=1(mod9)8^{2n} = (9-1)^{2n} \equiv (-1)^{2n} = 1 \pmod{9}

62=631=9×7162 = 63 - 1 = 9 \times 7 - 1, so 622n+1(1)2n+1=1(mod9)62^{2n+1} \equiv (-1)^{2n+1} = -1 \pmod{9}

82n622n+11(1)=2(mod9)8^{2n} - 62^{2n+1} \equiv 1 - (-1) = 2 \pmod{9}

Answer: (d) 2


PYQ 8: JEE Main 2023

Question: Let the number (22)2022+(2022)22(22)^{2022} + (2022)^{22} leave remainder α\alpha when divided by 3 and β\beta when divided by 7. Then (α2+β2)(\alpha^2 + \beta^2) is equal to:

Solution:

Finding α\alpha (mod 3):

221(mod3)22 \equiv 1 \pmod{3}2220221(mod3)22^{2022} \equiv 1 \pmod{3}

20220(mod3)2022 \equiv 0 \pmod{3}2022220(mod3)2022^{22} \equiv 0 \pmod{3}

α=1+0=1\alpha = 1 + 0 = 1

Finding β\beta (mod 7):

221(mod7)22 \equiv 1 \pmod{7}2220221(mod7)22^{2022} \equiv 1 \pmod{7}

202261(mod7)2022 \equiv 6 \equiv -1 \pmod{7}202222(1)22=1(mod7)2022^{22} \equiv (-1)^{22} = 1 \pmod{7}

β=1+1=2\beta = 1 + 1 = 2

Answer: α2+β2=1+4=5\alpha^2 + \beta^2 = 1 + 4 = \boxed{5}


PYQ 9: JEE Main 2021

Question: If {p}\{p\} denotes the fractional part of pp, then {32008}\left\{\frac{3^{200}}{8}\right\} is equal to:

Solution:

We need 3200mod83^{200} \mod 8

32=91(mod8)3^2 = 9 \equiv 1 \pmod{8}

3200=(32)1001100=1(mod8)3^{200} = (3^2)^{100} \equiv 1^{100} = 1 \pmod{8}

Fractional part = 18\frac{1}{8}

Answer: 18\frac{1}{8}


Part 8: Practice Problems

Level 1: Basic

  1. Find the last digit of 39993^{999}
  2. Find the remainder when 7507^{50} is divided by 11
  3. What is 2100mod52^{100} \mod 5?

Level 2: Intermediate

  1. Find the remainder when 1725617^{256} is divided by 17
  2. Find the last two digits of 31003^{100}
  3. Find 132023mod2113^{2023} \mod 21

Level 3: Advanced (JEE Level)

  1. Find the remainder when 7777^{7^7} is divided by 10
  2. Find the remainder when 22023+320232^{2023} + 3^{2023} is divided by 5
  3. If 5075257550^{75} - 25^{75} is divided by 13, find the remainder

Part 9: Quick Revision Formulas

Box 1: Unit Digit Rules

Last digit 0,1,5,6 → Always same
Last digit 4,9 → Cycle of 2
Last digit 2,3,7,8 → Cycle of 4

Box 2: Euler's Theorem

If gcd(a,k) = 1:
a^φ(k) ≡ 1 (mod k)

For prime p:
a^(p-1) ≡ 1 (mod p)

Box 3: Binomial Shortcuts

(km + 1)^n ≡ 1 (mod m)
(km - 1)^n ≡ (-1)^n (mod m)

Box 4: Common φ Values

φ(p) = p-1 (p prime)
φ(p^k) = p^(k-1)(p-1)
φ(mn) = φ(m)φ(n) if gcd(m,n)=1

Part 10: Summary & Strategy

When to Use Each Method

Problem TypeBest Approach
Last digit onlyUnit digit cyclicity table
Small divisor (< 20)Direct cyclicity
Prime divisorFermat's Little Theorem
Composite divisor, coprime baseEuler's Theorem
Base = divisor ± small numberBinomial Theorem
Tower powersNested cyclicity
Non-coprime base and divisorCRT or case analysis

Common Mistakes to Avoid

  1. Forgetting to simplify the base first
  2. Using Euler when gcd ≠ 1
  3. Taking position 0 instead of last position in cycle
  4. Not checking if direct calculation is faster

Time-Saving Tips

  • Memorize the unit digit table thoroughly
  • Know ϕ\phi values for common numbers (7, 9, 10, 11, 13)
  • Practice tower power problems
  • For JEE, most problems use cyclicity or simple binomial expansion

Master these techniques and you'll solve remainder problems in JEE Main within seconds! 🎯

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Binomial Theorem PYQs