Binomial Theorem6 min read

Finding Specific Coefficients Faster in Binomial Expansion

In JEE Main, Binomial Theorem carries significant weightage with 1-2 questions appearing yearly. A recurring theme involves finding specific coefficients or terms independent of x. While the general term method works, time pressure demands faster alternatives.

binomialcoefficientsshortcutstechniques

Finding Specific Coefficients Faster in Binomial Expansion

A Complete Guide for JEE Main with Shortcuts, Tricks & Previous Year Questions


Introduction

In JEE Main, Binomial Theorem carries significant weightage with 1-2 questions appearing yearly. A recurring theme involves finding specific coefficients or terms independent of x. While the general term method works, time pressure demands faster alternatives.

This guide provides structured shortcuts to solve such problems efficiently.


1. Core Concept: The General Term

For (a+b)n(a + b)^n, the general term is: Tr+1=(nr)anrbrT_{r+1} = \binom{n}{r} a^{n-r} b^r where (nr)=n!r!(nr)!\binom{n}{r} = \frac{n!}{r!(n-r)!}.

This is fundamental, but deriving rr repeatedly is time-consuming. Let’s optimize.


2. Shortcut for (axp+bxq)n(ax^p + bx^{-q})^n

2.1 Formula for rr

For the term containing xmx^m, use: r=npmp+q\boxed{r = \frac{np - m}{p + q}} Derivation: Tr+1=(nr)(axp)nr(bxq)r=(nr)anrbrxp(nr)qrT_{r+1} = \binom{n}{r} (ax^p)^{n-r} (bx^{-q})^r = \binom{n}{r} a^{n-r} b^r \, x^{p(n-r) - qr} Set the power of xx equal to mm: p(nr)qr=mpnprqr=mr=npmp+qp(n-r) - qr = m \quad \Rightarrow \quad pn - pr - qr = m \quad \Rightarrow \quad r = \frac{np - m}{p + q}

2.2 Term Independent of xx (Constant Term)

Set m=0m = 0: r=npp+q\boxed{r = \frac{np}{p + q}}

2.3 Validity Check

  • rr must be a non-negative integer.
  • 0rn0 \le r \le n.
  • If rr fails these conditions, the required term does not exist.

3. Quick Reference Table

To FindFormula for rrCondition
Coefficient of xmx^mr=npmp+qr = \frac{np - m}{p + q}0rn0 \le r \le n, integer
Independent term (x0x^0)r=npp+qr = \frac{np}{p + q}0rn0 \le r \le n, integer

4. Step-by-Step Application

Step 1: Identify parameters

Extract nn, pp, qq, aa, bb from (axp+bxq)n(ax^p + bx^{-q})^n.

Step 2: Compute rr

Use the appropriate formula.

Step 3: Validate rr

Check if rr is a valid integer within range.

Step 4: Compute the coefficient

Coefficient=(nr)anrbr\text{Coefficient} = \binom{n}{r} \cdot a^{n-r} \cdot b^r Don’t forget the signs if bb is negative.


5. Solved Examples

Example 1: Independent term in (x+1x)10\left(x + \frac{1}{x}\right)^{10}

  • n=10n=10, p=1p=1, q=1q=1
  • r=10×11+1=5r = \frac{10 \times 1}{1+1} = 5
  • Term: T6=(105)=252T_6 = \binom{10}{5} = 252

Answer: 252

Example 2: Coefficient of x4x^4 in (x2+1x)10\left(x^2 + \frac{1}{x}\right)^{10}

  • n=10n=10, p=2p=2, q=1q=1, m=4m=4
  • r=2043=163r = \frac{20 - 4}{3} = \frac{16}{3} (not integer)
  • Term does not exist.

Example 3: Coefficient of x8x^8 in (x2+1x)10\left(x^2 + \frac{1}{x}\right)^{10}

  • r=2083=4r = \frac{20 - 8}{3} = 4
  • Coefficient = (104)=210\binom{10}{4} = 210

6. JEE Main Previous Year Questions (PYQs)

PYQ 1 (JEE Main 2013)

Problem: Independent term in (x+1x2/3x1/3+1x1xx1/2)10\left(\frac{x+1}{x^{2/3} - x^{1/3} + 1} - \frac{x-1}{x - x^{1/2}}\right)^{10}.

Key Step: Simplify to (x1/3x1/2)10(x^{1/3} - x^{-1/2})^{10}.

Solution:

  • n=10n=10, p=13p=\frac{1}{3}, q=12q=\frac{1}{2}
  • r=10×1313+12=10/35/6=4r = \frac{10 \times \frac{1}{3}}{\frac{1}{3} + \frac{1}{2}} = \frac{10/3}{5/6} = 4
  • Term = (104)=210\binom{10}{4} = 210

Answer: 210


PYQ 2 (JEE Main 2020)

Problem: Constant term in (xkx2)10\left(\sqrt{x} - \frac{k}{x^2}\right)^{10} is 405. Find k|k|.

Solution:

  • n=10n=10, p=12p=\frac{1}{2}, q=2q=2
  • r=10×1212+2=55/2=2r = \frac{10 \times \frac{1}{2}}{\frac{1}{2} + 2} = \frac{5}{5/2} = 2
  • Constant term = (102)k2=45k2=405\binom{10}{2} k^2 = 45k^2 = 405
  • k2=9k=3k^2 = 9 \Rightarrow |k| = 3

Answer: 3


PYQ 3 (JEE Main 2021 September)

Problem: Independent term in (x412x2)12\left(\frac{x}{4} - \frac{12}{x^2}\right)^{12} is (3644)k\left(\frac{3^6}{4^4}\right)k. Find kk.

Solution:

  • n=12n=12, p=1p=1, q=2q=2
  • r=123=4r = \frac{12}{3} = 4
  • Term = (124)(14)8(12)4=49512448\binom{12}{4} \cdot \left(\frac{1}{4}\right)^8 \cdot (-12)^4 = 495 \cdot \frac{12^4}{4^8}
  • Simplify to 72925655=364455\frac{729}{256} \cdot 55 = \frac{3^6}{4^4} \cdot 55
  • Thus k=55k = 55

Answer: 55


PYQ 4 (JEE Main 2022)

Problem: Find natural number mm if coefficient of xx in (xm+1x2)22\left(x^m + \frac{1}{x^2}\right)^{22} is 1540.

Solution:

  • n=22n=22, q=2q=2, mm is unknown power in base.
  • Coefficient corresponds to (22r)=1540\binom{22}{r} = 1540.
  • From values, (223)=1540\binom{22}{3} = 1540, so r=3r = 3 or 1919.
  • Using r=22p1p+2r = \frac{22p - 1}{p + 2} (here p=mp = m):
    • For r=3r=3: 3=22m1m+2m=7/193 = \frac{22m-1}{m+2} \Rightarrow m = 7/19 (invalid)
    • For r=19r=19: 19=22m1m+2m=1319 = \frac{22m-1}{m+2} \Rightarrow m = 13

Answer: 13


7. Extended Cases & Tricks

7.1 Expressions with More Than Two Terms

If the expression is like (1+2x3x3)(axp+bxq)n(1 + 2x - 3x^3) \cdot (ax^p + bx^{-q})^n:

  • Find constant terms from the binomial expansion for powers that combine with the first factor to give x0x^0.
  • For (1)(1): need x0x^0 from binomial.
  • For (2x)(2x): need x1x^{-1} from binomial.
  • For (3x3)(-3x^3): need x3x^{-3} from binomial.
  • Sum all valid contributions.

7.2 Simplification Before Expansion

Always check if the expression can be simplified algebraically before applying binomial theorem.

7.3 Maximum/Minimum of Independent Term

If the independent term contains a parameter xx (like in (txα+(1x)βt)n\left(tx^{\alpha} + \frac{(1-x)^{\beta}}{t}\right)^n), after finding the term as a function of xx, use calculus (derivative = 0) to find extremum.


8. Common Pitfalls & Tips

  1. Sign Errors: Remember bb may be negative; include (1)r(-1)^r when needed.
  2. Fractional Powers: Handle p,qp, q carefully when they are fractions.
  3. Invalid rr: If rr is not an integer between 0 and nn, the term does not exist.
  4. Combining Factors: When a binomial is multiplied by another polynomial, consider all combinations that yield the target power.
  5. Binomial Coefficient Calculation: Know common values: (n0)=1\binom{n}{0}=1, (n1)=n\binom{n}{1}=n, (n2)=n(n1)2\binom{n}{2}=\frac{n(n-1)}{2}.

9. Practice Problems

  1. Independent term in (x21x3)10\left(x^2 - \frac{1}{x^3}\right)^{10}

    • n=10n=10, p=2p=2, q=3q=3
    • r=205=4r = \frac{20}{5} = 4
    • Term = (104)(1)6(1)4=210\binom{10}{4} \cdot (1)^6 \cdot (-1)^4 = 210
  2. Coefficient of x5x^5 in (x+2x2)11\left(x + \frac{2}{x^2}\right)^{11}

    • n=11n=11, p=1p=1, q=2q=2, m=5m=5
    • r=1153=2r = \frac{11 - 5}{3} = 2
    • Coefficient = (112)22=55×4=220\binom{11}{2} \cdot 2^2 = 55 \times 4 = 220
  3. Independent term in (x+1x3)10\left(\sqrt{x} + \frac{1}{\sqrt[3]{x}}\right)^{10}

    • n=10n=10, p=12p=\frac{1}{2}, q=13q=\frac{1}{3}
    • r=51/2+1/3=55/6=6r = \frac{5}{1/2 + 1/3} = \frac{5}{5/6} = 6
    • Term = (106)=210\binom{10}{6} = 210
  4. Relation between aa and bb if coefficients of x7x^7 in (ax2+1bx)11\left(ax^2 + \frac{1}{bx}\right)^{11} and x7x^{-7} in (ax1bx2)11\left(ax - \frac{1}{bx^2}\right)^{11} are equal.

    • For first: p=2p=2, q=1q=1, m=7m=7r1=2273=5r_1 = \frac{22-7}{3} = 5 Coefficient C1=(115)a6b5C_1 = \binom{11}{5} a^6 b^{-5}
    • For second: p=1p=1, q=2q=2, m=7m=-7r2=11+73=6r_2 = \frac{11 + 7}{3} = 6 Coefficient C2=(116)a5b6(1)6C_2 = \binom{11}{6} a^5 b^{-6} \cdot (-1)^6
    • Equate C1=C2C_1 = C_2: (115)a6b5=(116)a5b6ab=1\binom{11}{5} a^6 b^{-5} = \binom{11}{6} a^5 b^{-6} \quad \Rightarrow \quad a b = 1

10. Summary

  • Shortcut: r=npmp+qr = \frac{np - m}{p+q} for (axp+bxq)n(ax^p + bx^{-q})^n.
  • Independent term: set m=0m=0r=npp+qr = \frac{np}{p+q}.
  • Always check validity of rr.
  • Simplify first, then apply the shortcut.
  • For product expansions, consider each multiplicative term separately.

Mastering this approach will significantly reduce your problem-solving time in JEE Main.


Best of luck for your JEE Main preparation! 🎯

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Binomial Theorem PYQs