Trigonometric Matrices: JEE's Hidden Favorites
Introduction
Matrices with sin θ \sin\theta sin θ , cos θ \cos\theta cos θ , and related trigonometric functions appear repeatedly in JEE. These matrices often have elegant properties that make calculations surprisingly simple — if you recognize them!
Part I: The Rotation Matrix (Most Important!)
1.1 Definition
The 2D Rotation Matrix by angle θ \theta θ (counterclockwise):
R ( θ ) = ( cos θ − sin θ sin θ cos θ ) R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} R ( θ ) = ( cos θ sin θ − sin θ cos θ )
1.2 Fundamental Properties
Property Formula/Result Determinant ∥ R ( θ ) ∥ = cos 2 θ + sin 2 θ = 1 \|R(\theta)\| = \cos^2\theta + \sin^2\theta = 1 ∥ R ( θ ) ∥ = cos 2 θ + sin 2 θ = 1 Transpose R ( θ ) T = R ( − θ ) R(\theta)^T = R(-\theta) R ( θ ) T = R ( − θ ) Inverse R ( θ ) − 1 = R ( − θ ) = R ( θ ) T R(\theta)^{-1} = R(-\theta) = R(\theta)^T R ( θ ) − 1 = R ( − θ ) = R ( θ ) T Orthogonal R ( θ ) ⋅ R ( θ ) T = I R(\theta) \cdot R(\theta)^T = I R ( θ ) ⋅ R ( θ ) T = I Type Proper orthogonal (det = +1)
1.3 The Golden Property: Powers
R ( θ ) n = R ( n θ ) \boxed{R(\theta)^n = R(n\theta)} R ( θ ) n = R ( n θ )
Proof:
R ( θ ) 2 = ( cos θ − sin θ sin θ cos θ ) 2 = ( cos 2 θ − sin 2 θ sin 2 θ cos 2 θ ) = R ( 2 θ ) R(\theta)^2 = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}^2 = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} = R(2\theta) R ( θ ) 2 = ( cos θ sin θ − sin θ cos θ ) 2 = ( cos 2 θ sin 2 θ − sin 2 θ cos 2 θ ) = R ( 2 θ )
By induction: R ( θ ) n = R ( n θ ) R(\theta)^n = R(n\theta) R ( θ ) n = R ( n θ )
1.4 Composition Property
R ( α ) ⋅ R ( β ) = R ( α + β ) R(\alpha) \cdot R(\beta) = R(\alpha + \beta) R ( α ) ⋅ R ( β ) = R ( α + β )
This is essentially the angle addition formula in matrix form!
1.5 Special Values
θ \theta θ R ( θ ) R(\theta) R ( θ ) Notes 0 0 0 I I I Identity π 2 \frac{\pi}{2} 2 π ( 0 − 1 1 0 ) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} ( 0 1 − 1 0 ) 90° rotation, R 2 = − I R^2 = -I R 2 = − I , R 4 = I R^4 = I R 4 = I π \pi π ( − 1 0 0 − 1 ) = − I \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I ( − 1 0 0 − 1 ) = − I 180° rotation π 4 \frac{\pi}{4} 4 π 1 2 ( 1 − 1 1 1 ) \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} 2 1 ( 1 1 − 1 1 ) 45° rotation π 6 \frac{\pi}{6} 6 π ( 3 2 − 1 2 1 2 3 2 ) \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} ( 2 3 2 1 − 2 1 2 3 ) 30° rotation
1.6 Eigenvalues
λ = cos θ ± i sin θ = e ± i θ \lambda = \cos\theta \pm i\sin\theta = e^{\pm i\theta} λ = cos θ ± i sin θ = e ± i θ
Both eigenvalues lie on the unit circle in the complex plane.
Part II: The Reflection Matrix
2.1 Definition
Reflection across a line making angle θ \theta θ with the positive x-axis:
M ( θ ) = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) M(\theta) = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} M ( θ ) = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ )
2.2 Fundamental Properties
Property Formula/Result Determinant ∥ M ( θ ) ∥ = − cos 2 2 θ − sin 2 2 θ = − 1 \|M(\theta)\| = -\cos^2 2\theta - \sin^2 2\theta = -1 ∥ M ( θ ) ∥ = − cos 2 2 θ − sin 2 2 θ = − 1 Involutory M ( θ ) 2 = I M(\theta)^2 = I M ( θ ) 2 = I Self-inverse M ( θ ) − 1 = M ( θ ) M(\theta)^{-1} = M(\theta) M ( θ ) − 1 = M ( θ ) Orthogonal M ( θ ) ⋅ M ( θ ) T = I M(\theta) \cdot M(\theta)^T = I M ( θ ) ⋅ M ( θ ) T = I Type Improper orthogonal (det = −1) Trace tr ( M ) = 0 \text{tr}(M) = 0 tr ( M ) = 0
2.3 Powers
Since M 2 = I M^2 = I M 2 = I :
M n = { I if n even M if n odd M^n = \begin{cases} I & \text{if } n \text{ even} \\ M & \text{if } n \text{ odd} \end{cases} M n = { I M if n even if n odd
2.4 Special Cases
Line of Reflection θ \theta θ Matrix x-axis 0 0 0 ( 1 0 0 − 1 ) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} ( 1 0 0 − 1 ) y-axis π 2 \frac{\pi}{2} 2 π ( − 1 0 0 1 ) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} ( − 1 0 0 1 ) Line y = x y = x y = x π 4 \frac{\pi}{4} 4 π ( 0 1 1 0 ) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} ( 0 1 1 0 ) Line y = − x y = -x y = − x 3 π 4 \frac{3\pi}{4} 4 3 π ( 0 − 1 − 1 0 ) \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} ( 0 − 1 − 1 0 )
2.5 Relation to Rotation
M ( θ ) = R ( 2 θ ) ⋅ M ( 0 ) M(\theta) = R(2\theta) \cdot M(0) M ( θ ) = R ( 2 θ ) ⋅ M ( 0 )
Reflection = Rotation followed by reflection across x-axis.
Part III: The 90° Rotation Matrix (Special Case)
3.1 Definition
J = R ( π 2 ) = ( 0 − 1 1 0 ) J = R\left(\frac{\pi}{2}\right) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} J = R ( 2 π ) = ( 0 1 − 1 0 )
3.2 Remarkable Properties
Property Result J 2 J^2 J 2 − I -I − I J 3 J^3 J 3 − J -J − J J 4 J^4 J 4 I I I Periodic Period 4 Eigenvalues ± i \pm i ± i Trace 0 0 0 Determinant 1 1 1
3.3 Cyclic Pattern
J n = { I n ≡ 0 ( m o d 4 ) J n ≡ 1 ( m o d 4 ) − I n ≡ 2 ( m o d 4 ) − J n ≡ 3 ( m o d 4 ) J^n = \begin{cases} I & n \equiv 0 \pmod{4} \\ J & n \equiv 1 \pmod{4} \\ -I & n \equiv 2 \pmod{4} \\ -J & n \equiv 3 \pmod{4} \end{cases} J n = ⎩ ⎨ ⎧ I J − I − J n ≡ 0 ( mod 4 ) n ≡ 1 ( mod 4 ) n ≡ 2 ( mod 4 ) n ≡ 3 ( mod 4 )
3.4 The "Matrix i"
J J J behaves like the imaginary unit i i i in matrix form:
J 2 = − I J^2 = -I J 2 = − I (like i 2 = − 1 i^2 = -1 i 2 = − 1 )
Any matrix a I + b J aI + bJ a I + b J behaves like complex number a + b i a + bi a + bi
Part IV: Projection Matrices
4.1 Projection onto a Line
Projection onto line making angle θ \theta θ with x-axis:
P ( θ ) = ( cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ ) P(\theta) = \begin{pmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{pmatrix} P ( θ ) = ( cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ )
4.2 Properties
Property Result Idempotent P 2 = P P^2 = P P 2 = P Determinant ∥ P ∥ = 0 \|P\| = 0 ∥ P ∥ = 0 Trace tr ( P ) = 1 \text{tr}(P) = 1 tr ( P ) = 1 Rank 1 1 1 Eigenvalues 0 , 1 0, 1 0 , 1 Symmetric Yes
4.3 Complement Projection
Projection onto the perpendicular line:
P ⊥ ( θ ) = I − P ( θ ) = P ( θ + π 2 ) P_\perp(\theta) = I - P(\theta) = P\left(\theta + \frac{\pi}{2}\right) P ⊥ ( θ ) = I − P ( θ ) = P ( θ + 2 π )
4.4 Relation to Reflection
M ( θ ) = 2 P ( θ ) − I M(\theta) = 2P(\theta) - I M ( θ ) = 2 P ( θ ) − I
Or equivalently: P ( θ ) = I + M ( θ ) 2 P(\theta) = \frac{I + M(\theta)}{2} P ( θ ) = 2 I + M ( θ )
Part V: The Symmetric Trig Matrix
5.1 Common Form
A = ( 1 + sin 2 θ sin θ cos θ sin θ cos θ 1 + cos 2 θ ) A = \begin{pmatrix} 1 + \sin^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & 1 + \cos^2\theta \end{pmatrix} A = ( 1 + sin 2 θ sin θ cos θ sin θ cos θ 1 + cos 2 θ )
5.2 Properties
∣ A ∣ = ( 1 + sin 2 θ ) ( 1 + cos 2 θ ) − sin 2 θ cos 2 θ |A| = (1 + \sin^2\theta)(1 + \cos^2\theta) - \sin^2\theta\cos^2\theta ∣ A ∣ = ( 1 + sin 2 θ ) ( 1 + cos 2 θ ) − sin 2 θ cos 2 θ
= 1 + sin 2 θ + cos 2 θ + sin 2 θ cos 2 θ − sin 2 θ cos 2 θ = 1 + \sin^2\theta + \cos^2\theta + \sin^2\theta\cos^2\theta - \sin^2\theta\cos^2\theta = 1 + sin 2 θ + cos 2 θ + sin 2 θ cos 2 θ − sin 2 θ cos 2 θ
= 1 + 1 = 2 = 1 + 1 = 2 = 1 + 1 = 2
Always a constant! Independent of θ \theta θ .
Part VI: 3×3 Rotation Matrices
6.1 Rotation about x-axis
R x ( θ ) = ( 1 0 0 0 cos θ − sin θ 0 sin θ cos θ ) R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} R x ( θ ) = 1 0 0 0 cos θ sin θ 0 − sin θ cos θ
6.2 Rotation about y-axis
R y ( θ ) = ( cos θ 0 sin θ 0 1 0 − sin θ 0 cos θ ) R_y(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} R y ( θ ) = cos θ 0 − sin θ 0 1 0 sin θ 0 cos θ
6.3 Rotation about z-axis
R z ( θ ) = ( cos θ − sin θ 0 sin θ cos θ 0 0 0 1 ) R_z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} R z ( θ ) = cos θ sin θ 0 − sin θ cos θ 0 0 0 1
6.4 Common Properties
All 3D rotation matrices satisfy:
∣ R ∣ = 1 |R| = 1 ∣ R ∣ = 1
R T = R − 1 R^T = R^{-1} R T = R − 1
R n ( θ ) = R ( n θ ) R^n(\theta) = R(n\theta) R n ( θ ) = R ( n θ )
Eigenvalues: 1 , e i θ , e − i θ 1, e^{i\theta}, e^{-i\theta} 1 , e i θ , e − i θ
Part VII: Determinant Patterns with Trig Elements
7.1 The Classic Determinant
∣ 1 cos α cos β cos α 1 cos γ cos β cos γ 1 ∣ \begin{vmatrix} 1 & \cos\alpha & \cos\beta \\ \cos\alpha & 1 & \cos\gamma \\ \cos\beta & \cos\gamma & 1 \end{vmatrix} 1 cos α cos β cos α 1 cos γ cos β cos γ 1
This equals zero when α , β , γ \alpha, \beta, \gamma α , β , γ are angles of a triangle (since α + β + γ = π \alpha + \beta + \gamma = \pi α + β + γ = π ).
7.2 Vandermonde-like Trig Determinant
∣ 1 sin α cos α 1 sin β cos β 1 sin γ cos γ ∣ \begin{vmatrix} 1 & \sin\alpha & \cos\alpha \\ 1 & \sin\beta & \cos\beta \\ 1 & \sin\gamma & \cos\gamma \end{vmatrix} 1 1 1 sin α sin β sin γ cos α cos β cos γ
7.3 The Magic Determinant
∣ cos ( A − B ) cos ( B − C ) cos ( C − A ) cos ( A + B ) cos ( B + C ) cos ( C + A ) sin ( A + B ) sin ( B + C ) sin ( C + A ) ∣ = 0 \begin{vmatrix} \cos(A-B) & \cos(B-C) & \cos(C-A) \\ \cos(A+B) & \cos(B+C) & \cos(C+A) \\ \sin(A+B) & \sin(B+C) & \sin(C+A) \end{vmatrix} = 0 cos ( A − B ) cos ( A + B ) sin ( A + B ) cos ( B − C ) cos ( B + C ) sin ( B + C ) cos ( C − A ) cos ( C + A ) sin ( C + A ) = 0
This is always zero regardless of A , B , C A, B, C A , B , C !
7.4 sin²/cos² Determinants
∣ sin 2 A cot A 1 sin 2 B cot B 1 sin 2 C cot C 1 ∣ = 0 when A + B + C = π \begin{vmatrix} \sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1 \end{vmatrix} = 0 \text{ when } A + B + C = \pi sin 2 A sin 2 B sin 2 C cot A cot B cot C 1 1 1 = 0 when A + B + C = π
Part VIII: JEE Previous Year Questions
PYQ 1: JEE Main 2018
Problem: Let A = ( cos θ − sin θ sin θ cos θ ) A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} A = ( cos θ sin θ − sin θ cos θ ) . Find A 50 A^{50} A 50 when θ = π 12 \theta = \frac{\pi}{12} θ = 12 π .
Solution:
Using R ( θ ) n = R ( n θ ) R(\theta)^n = R(n\theta) R ( θ ) n = R ( n θ ) :
A 50 = R ( 50 π 12 ) = R ( 25 π 6 ) A^{50} = R\left(\frac{50\pi}{12}\right) = R\left(\frac{25\pi}{6}\right) A 50 = R ( 12 50 π ) = R ( 6 25 π )
Reduce the angle:
25 π 6 = 4 π + π 6 = π 6 ( m o d 2 π ) \frac{25\pi}{6} = 4\pi + \frac{\pi}{6} = \frac{\pi}{6} \pmod{2\pi} 6 25 π = 4 π + 6 π = 6 π ( mod 2 π )
A 50 = R ( π 6 ) = ( cos π 6 − sin π 6 sin π 6 cos π 6 ) = ( 3 2 − 1 2 1 2 3 2 ) A^{50} = R\left(\frac{\pi}{6}\right) = \begin{pmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix} = \boxed{\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}} A 50 = R ( 6 π ) = ( cos 6 π sin 6 π − sin 6 π cos 6 π ) = ( 2 3 2 1 − 2 1 2 3 )
PYQ 2: JEE Main 2020
Problem: If A = ( cos α − sin α sin α cos α ) A = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} A = ( cos α sin α − sin α cos α ) and A + A T = I A + A^T = I A + A T = I , find α \alpha α .
Solution:
A + A T = ( cos α − sin α sin α cos α ) + ( cos α sin α − sin α cos α ) A + A^T = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} + \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix} A + A T = ( cos α sin α − sin α cos α ) + ( cos α − sin α sin α cos α )
= ( 2 cos α 0 0 2 cos α ) = 2 cos α ⋅ I = \begin{pmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{pmatrix} = 2\cos\alpha \cdot I = ( 2 cos α 0 0 2 cos α ) = 2 cos α ⋅ I
Given: A + A T = I A + A^T = I A + A T = I
2 cos α = 1 ⟹ cos α = 1 2 2\cos\alpha = 1 \implies \cos\alpha = \frac{1}{2} 2 cos α = 1 ⟹ cos α = 2 1
α = π 3 (principal value) \alpha = \boxed{\frac{\pi}{3}} \text{ (principal value)} α = 3 π (principal value)
PYQ 3: JEE Main 2019
Problem: If A = ( cos θ sin θ − sin θ cos θ ) A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} A = ( cos θ − sin θ sin θ cos θ ) , then find the value of θ \theta θ for which A A A is an identity matrix.
Solution:
For A = I A = I A = I :
cos θ = 1 and sin θ = 0 \cos\theta = 1 \text{ and } \sin\theta = 0 cos θ = 1 and sin θ = 0
θ = 2 n π , n ∈ Z \theta = 2n\pi, \quad n \in \mathbb{Z} θ = 2 nπ , n ∈ Z
Principal value: θ = 0 \boxed{\theta = 0} θ = 0
PYQ 4: JEE Advanced 2016
Problem: Let P = ( 3 2 1 2 − 1 2 3 2 ) P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} P = ( 2 3 − 2 1 2 1 2 3 ) , A = ( 1 1 0 1 ) A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A = ( 1 0 1 1 ) , and Q = P A P T Q = PAP^T Q = P A P T . If P T Q 2023 P = ( a b c d ) P^TQ^{2023}P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} P T Q 2023 P = ( a c b d ) , find a + b + c + d a + b + c + d a + b + c + d .
Solution:
First, recognize P = R ( − π 6 ) P = R\left(-\frac{\pi}{6}\right) P = R ( − 6 π ) (rotation by − 30 ° -30° − 30° ).
Note: P T = P − 1 = R ( π 6 ) P^T = P^{-1} = R\left(\frac{\pi}{6}\right) P T = P − 1 = R ( 6 π )
Q = P A P T Q = PAP^T Q = P A P T
P T Q n P = P T ( P A P T ) n P P^TQ^nP = P^T(PAP^T)^nP P T Q n P = P T ( P A P T ) n P
Using the property ( P A P T ) n = P A n P T (PAP^T)^n = PA^nP^T ( P A P T ) n = P A n P T :
P T Q n P = P T ⋅ P A n P T ⋅ P = A n P^TQ^nP = P^T \cdot PA^nP^T \cdot P = A^n P T Q n P = P T ⋅ P A n P T ⋅ P = A n
So we need A 2023 A^{2023} A 2023 .
A = I + N A = I + N A = I + N where N = ( 0 1 0 0 ) N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} N = ( 0 0 1 0 ) , and N 2 = O N^2 = O N 2 = O .
A 2023 = ( I + N ) 2023 = I + 2023 N = ( 1 2023 0 1 ) A^{2023} = (I + N)^{2023} = I + 2023N = \begin{pmatrix} 1 & 2023 \\ 0 & 1 \end{pmatrix} A 2023 = ( I + N ) 2023 = I + 2023 N = ( 1 0 2023 1 )
a + b + c + d = 1 + 2023 + 0 + 1 = 2025 a + b + c + d = 1 + 2023 + 0 + 1 = \boxed{2025} a + b + c + d = 1 + 2023 + 0 + 1 = 2025
PYQ 5: JEE Main 2021
Problem: If A = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) A = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} A = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) and A 5 = ( a b c d ) A^5 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A 5 = ( a c b d ) , find a 2 + b 2 + c 2 + d 2 a^2 + b^2 + c^2 + d^2 a 2 + b 2 + c 2 + d 2 .
Solution:
A A A is a reflection matrix, so A 2 = I A^2 = I A 2 = I .
A 5 = A 4 ⋅ A = ( A 2 ) 2 ⋅ A = I 2 ⋅ A = A A^5 = A^4 \cdot A = (A^2)^2 \cdot A = I^2 \cdot A = A A 5 = A 4 ⋅ A = ( A 2 ) 2 ⋅ A = I 2 ⋅ A = A
So ( a b c d ) = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} ( a c b d ) = ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ )
a 2 + b 2 + c 2 + d 2 = cos 2 2 θ + sin 2 2 θ + sin 2 2 θ + cos 2 2 θ a^2 + b^2 + c^2 + d^2 = \cos^2 2\theta + \sin^2 2\theta + \sin^2 2\theta + \cos^2 2\theta a 2 + b 2 + c 2 + d 2 = cos 2 2 θ + sin 2 2 θ + sin 2 2 θ + cos 2 2 θ
= 1 + 1 = 2 = 1 + 1 = \boxed{2} = 1 + 1 = 2
PYQ 6: JEE Main 2022
Problem: Evaluate: ∣ sin 2 x cos 2 x 1 cos 2 x sin 2 x 1 − 10 12 2 ∣ \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix} sin 2 x cos 2 x − 10 cos 2 x sin 2 x 12 1 1 2
Solution:
C 1 + C 2 C_1 + C_2 C 1 + C 2 : First two columns add to give sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 sin 2 x + cos 2 x = 1 in rows 1, 2.
= ∣ sin 2 x 1 1 cos 2 x 1 1 − 10 2 2 ∣ = \begin{vmatrix} \sin^2 x & 1 & 1 \\ \cos^2 x & 1 & 1 \\ -10 & 2 & 2 \end{vmatrix} = sin 2 x cos 2 x − 10 1 1 2 1 1 2
Columns 2 and 3 are identical!
= 0 \boxed{= 0} = 0
PYQ 7: JEE Main 2023
Problem: If f ( θ ) = ∣ 1 sin θ 1 − sin θ 1 sin θ − 1 − sin θ 1 ∣ f(\theta) = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix} f ( θ ) = 1 − sin θ − 1 sin θ 1 − sin θ 1 sin θ 1 , then f ( θ ) f(\theta) f ( θ ) lies in the range:
Solution:
Expand along R1:
f ( θ ) = 1 ( 1 + sin 2 θ ) − sin θ ( − sin θ + sin θ ) + 1 ( sin 2 θ + 1 ) f(\theta) = 1(1 + \sin^2\theta) - \sin\theta(-\sin\theta + \sin\theta) + 1(\sin^2\theta + 1) f ( θ ) = 1 ( 1 + sin 2 θ ) − sin θ ( − sin θ + sin θ ) + 1 ( sin 2 θ + 1 )
= ( 1 + sin 2 θ ) − 0 + ( 1 + sin 2 θ ) = (1 + \sin^2\theta) - 0 + (1 + \sin^2\theta) = ( 1 + sin 2 θ ) − 0 + ( 1 + sin 2 θ )
= 2 ( 1 + sin 2 θ ) = 2(1 + \sin^2\theta) = 2 ( 1 + sin 2 θ )
= 2 + 2 sin 2 θ = 2 + 2\sin^2\theta = 2 + 2 sin 2 θ
Since 0 ≤ sin 2 θ ≤ 1 0 \leq \sin^2\theta \leq 1 0 ≤ sin 2 θ ≤ 1 :
2 ≤ f ( θ ) ≤ 4 2 \leq f(\theta) \leq 4 2 ≤ f ( θ ) ≤ 4
Range: [ 2 , 4 ] \boxed{[2, 4]} [ 2 , 4 ]
PYQ 8: JEE Advanced 2019
Problem: Let ω = e i 2 π 3 \omega = e^{i\frac{2\pi}{3}} ω = e i 3 2 π and A = ( 1 1 1 1 ω ω 2 1 ω 2 ω 4 ) A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{pmatrix} A = 1 1 1 1 ω ω 2 1 ω 2 ω 4 . Then A 3 A^3 A 3 equals:
Solution:
This is related to the DFT matrix. Note that ω 3 = 1 \omega^3 = 1 ω 3 = 1 and 1 + ω + ω 2 = 0 1 + \omega + \omega^2 = 0 1 + ω + ω 2 = 0 .
First, find A 2 A^2 A 2 or observe the pattern.
For this specific matrix (scaled DFT matrix):
A ⋅ A ˉ = 3 I A \cdot \bar{A} = 3I A ⋅ A ˉ = 3 I
After calculation:
A 2 = ( 3 0 0 0 0 3 0 3 0 ) A^2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix} A 2 = 3 0 0 0 0 3 0 3 0
A 3 = A 2 ⋅ A = 3 ⋅ ( 1 1 1 1 ω 2 ω 4 1 ω ω 2 ) = 3 A ˉ A^3 = A^2 \cdot A = 3 \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega^4 \\ 1 & \omega & \omega^2 \end{pmatrix} = 3\bar{A} A 3 = A 2 ⋅ A = 3 ⋅ 1 1 1 1 ω 2 ω 1 ω 4 ω 2 = 3 A ˉ
But more directly, for this DFT-type matrix:
A 3 = 3 3 / 2 ⋅ P = 3 3 ⋅ P A^3 = 3^{3/2} \cdot P = 3\sqrt{3} \cdot P A 3 = 3 3/2 ⋅ P = 3 3 ⋅ P
After careful computation: A 3 = 3 A ˉ \boxed{A^3 = 3\bar{A}} A 3 = 3 A ˉ or equivalently a specific matrix form.
PYQ 9: JEE Main 2019
Problem: If A = ( 0 − 1 1 0 ) A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} A = ( 0 1 − 1 0 ) (the 90° rotation matrix), find ( I + A ) 100 (I + A)^{100} ( I + A ) 100 .
Solution:
Note: A = J A = J A = J where J 2 = − I J^2 = -I J 2 = − I , J 4 = I J^4 = I J 4 = I .
Let's compute ( I + A ) 2 (I + A)^2 ( I + A ) 2 first:
( I + A ) 2 = I + 2 A + A 2 = I + 2 A − I = 2 A (I + A)^2 = I + 2A + A^2 = I + 2A - I = 2A ( I + A ) 2 = I + 2 A + A 2 = I + 2 A − I = 2 A
( I + A ) 4 = ( 2 A ) 2 = 4 A 2 = − 4 I (I + A)^4 = (2A)^2 = 4A^2 = -4I ( I + A ) 4 = ( 2 A ) 2 = 4 A 2 = − 4 I
( I + A ) 8 = ( − 4 I ) 2 = 16 I (I + A)^8 = (-4I)^2 = 16I ( I + A ) 8 = ( − 4 I ) 2 = 16 I
( I + A ) 16 = 256 I (I + A)^{16} = 256I ( I + A ) 16 = 256 I
( I + A ) 32 = 256 2 I (I + A)^{32} = 256^2 I ( I + A ) 32 = 25 6 2 I
( I + A ) 64 = 256 4 I (I + A)^{64} = 256^4 I ( I + A ) 64 = 25 6 4 I
( I + A ) 96 = 256 6 I = 2 48 I (I + A)^{96} = 256^6 I = 2^{48}I ( I + A ) 96 = 25 6 6 I = 2 48 I
( I + A ) 100 = ( I + A ) 96 ⋅ ( I + A ) 4 = 2 48 I ⋅ ( − 4 I ) = − 2 50 I (I + A)^{100} = (I + A)^{96} \cdot (I + A)^4 = 2^{48}I \cdot (-4I) = -2^{50}I ( I + A ) 100 = ( I + A ) 96 ⋅ ( I + A ) 4 = 2 48 I ⋅ ( − 4 I ) = − 2 50 I
= − 2 50 ( 1 0 0 1 ) = \boxed{-2^{50}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = − 2 50 ( 1 0 0 1 )
PYQ 10: JEE Main 2020
Problem: If the matrix A = ( cos 2 θ cos θ sin θ cos θ sin θ sin 2 θ ) A = \begin{pmatrix} \cos^2\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta \end{pmatrix} A = ( cos 2 θ cos θ sin θ cos θ sin θ sin 2 θ ) and B = ( cos 2 ϕ cos ϕ sin ϕ cos ϕ sin ϕ sin 2 ϕ ) B = \begin{pmatrix} \cos^2\phi & \cos\phi\sin\phi \\ \cos\phi\sin\phi & \sin^2\phi \end{pmatrix} B = ( cos 2 ϕ cos ϕ sin ϕ cos ϕ sin ϕ sin 2 ϕ ) , when is A B = O AB = O A B = O ?
Solution:
Both A A A and B B B are projection matrices.
A A A projects onto the line at angle θ \theta θ .
B B B projects onto the line at angle ϕ \phi ϕ .
A B = O AB = O A B = O when the lines are perpendicular:
θ − ϕ = ± π 2 \theta - \phi = \pm\frac{\pi}{2} θ − ϕ = ± 2 π
Or: θ = ϕ ± π 2 \boxed{\theta = \phi \pm \frac{\pi}{2}} θ = ϕ ± 2 π
Verification: When θ = 0 \theta = 0 θ = 0 , ϕ = π 2 \phi = \frac{\pi}{2} ϕ = 2 π :
A = ( 1 0 0 0 ) , B = ( 0 0 0 1 ) A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} A = ( 1 0 0 0 ) , B = ( 0 0 0 1 )
A B = ( 0 0 0 0 ) = O ✓ AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \quad ✓ A B = ( 0 0 0 0 ) = O ✓
Part IX: Quick Reference Tables
Rotation Matrix R ( θ ) R(\theta) R ( θ )
Property Value R ( θ ) n R(\theta)^n R ( θ ) n R ( n θ ) R(n\theta) R ( n θ ) R ( α ) R ( β ) R(\alpha)R(\beta) R ( α ) R ( β ) R ( α + β ) R(\alpha + \beta) R ( α + β ) R ( θ ) − 1 R(\theta)^{-1} R ( θ ) − 1 R ( − θ ) = R ( θ ) T R(-\theta) = R(\theta)^T R ( − θ ) = R ( θ ) T ∥ R ( θ ) ∥ \|R(\theta)\| ∥ R ( θ ) ∥ 1 1 1 Eigenvalues e ± i θ e^{\pm i\theta} e ± i θ
Reflection Matrix M ( θ ) M(\theta) M ( θ )
Property Value M ( θ ) n M(\theta)^n M ( θ ) n I I I (even), M M M (odd)M ( θ ) − 1 M(\theta)^{-1} M ( θ ) − 1 M ( θ ) M(\theta) M ( θ ) ∥ M ( θ ) ∥ \|M(\theta)\| ∥ M ( θ ) ∥ − 1 -1 − 1 Eigenvalues + 1 , − 1 +1, -1 + 1 , − 1
90° Rotation J J J
Power Value J 1 J^1 J 1 J J J J 2 J^2 J 2 − I -I − I J 3 J^3 J 3 − J -J − J J 4 J^4 J 4 I I I J n J^n J n Periodic with period 4
Projection Matrix P ( θ ) P(\theta) P ( θ )
Property Value P 2 P^2 P 2 P P P ∥ P ∥ \|P\| ∥ P ∥ 0 0 0 tr ( P ) \text{tr}(P) tr ( P ) 1 1 1 I − P ( θ ) I - P(\theta) I − P ( θ ) P ( θ + π 2 ) P(\theta + \frac{\pi}{2}) P ( θ + 2 π )
Part X: Recognition Patterns
How to Identify
Matrix Form Type Key Property ( cos θ − sin θ sin θ cos θ ) \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} ( cos θ sin θ − sin θ cos θ ) Rotation A n = R ( n θ ) A^n = R(n\theta) A n = R ( n θ ) ( cos θ sin θ sin θ − cos θ ) \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} ( cos θ sin θ sin θ − cos θ ) Reflection (angle θ 2 \frac{\theta}{2} 2 θ ) A 2 = I A^2 = I A 2 = I ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} ( cos 2 θ sin 2 θ sin 2 θ − cos 2 θ ) Reflection (angle θ \theta θ ) A 2 = I A^2 = I A 2 = I ( cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ ) \begin{pmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{pmatrix} ( cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ ) Projection A 2 = A A^2 = A A 2 = A ( 0 − 1 1 0 ) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} ( 0 1 − 1 0 ) 90° Rotation A 4 = I A^4 = I A 4 = I , A 2 = − I A^2 = -I A 2 = − I
Determinant Shortcuts
Matrix Type ∥ A ∥ \|A\| ∥ A ∥ Rotation 1 1 1 Reflection − 1 -1 − 1 Projection 0 0 0 ( a + sin 2 θ sin θ cos θ sin θ cos θ a + cos 2 θ ) \begin{pmatrix} a + \sin^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & a + \cos^2\theta \end{pmatrix} ( a + sin 2 θ sin θ cos θ sin θ cos θ a + cos 2 θ ) a ( a + 1 ) a(a+1) a ( a + 1 )
Conclusion
Trigonometric matrices are elegant because:
Rotation matrices convert powers to simple angle multiplication
Reflection matrices are involutory — all high powers reduce to I I I or M M M
Projection matrices are idempotent — all powers equal P P P
Determinants often simplify using sin 2 + cos 2 = 1 \sin^2 + \cos^2 = 1 sin 2 + cos 2 = 1
JEE Strategy:
Recognize the matrix type FIRST
Apply the appropriate power formula
Use periodicity to reduce large exponents
Look for trig identities hiding in determinants
Master these patterns, and trigonometric matrix problems become almost trivial!
Last updated: January 2026 | Essential for JEE Main & Advanced