Matrices Determinants13 min read

Trigonometric Matrices: JEE's Hidden Favorites

Matrices with $\sin\theta$, $\cos\theta$, and related trigonometric functions appear repeatedly in JEE. These matrices often have elegant properties that make calculations surprisingly simple — if you recognize them!

matricestrigonometryrotationspecial

Trigonometric Matrices: JEE's Hidden Favorites

Introduction

Matrices with sinθ\sin\theta, cosθ\cos\theta, and related trigonometric functions appear repeatedly in JEE. These matrices often have elegant properties that make calculations surprisingly simple — if you recognize them!


Part I: The Rotation Matrix (Most Important!)

1.1 Definition

The 2D Rotation Matrix by angle θ\theta (counterclockwise):

R(θ)=(cosθsinθsinθcosθ)R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}

1.2 Fundamental Properties

PropertyFormula/Result
DeterminantR(θ)=cos2θ+sin2θ=1\|R(\theta)\| = \cos^2\theta + \sin^2\theta = 1
TransposeR(θ)T=R(θ)R(\theta)^T = R(-\theta)
InverseR(θ)1=R(θ)=R(θ)TR(\theta)^{-1} = R(-\theta) = R(\theta)^T
OrthogonalR(θ)R(θ)T=IR(\theta) \cdot R(\theta)^T = I
TypeProper orthogonal (det = +1)

1.3 The Golden Property: Powers

R(θ)n=R(nθ)\boxed{R(\theta)^n = R(n\theta)}

Proof: R(θ)2=(cosθsinθsinθcosθ)2=(cos2θsin2θsin2θcos2θ)=R(2θ)R(\theta)^2 = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}^2 = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} = R(2\theta)

By induction: R(θ)n=R(nθ)R(\theta)^n = R(n\theta)

1.4 Composition Property

R(α)R(β)=R(α+β)R(\alpha) \cdot R(\beta) = R(\alpha + \beta)

This is essentially the angle addition formula in matrix form!

1.5 Special Values

θ\thetaR(θ)R(\theta)Notes
00IIIdentity
π2\frac{\pi}{2}(0110)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}90° rotation, R2=IR^2 = -I, R4=IR^4 = I
π\pi(1001)=I\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I180° rotation
π4\frac{\pi}{4}12(1111)\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}45° rotation
π6\frac{\pi}{6}(32121232)\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}30° rotation

1.6 Eigenvalues

λ=cosθ±isinθ=e±iθ\lambda = \cos\theta \pm i\sin\theta = e^{\pm i\theta}

Both eigenvalues lie on the unit circle in the complex plane.


Part II: The Reflection Matrix

2.1 Definition

Reflection across a line making angle θ\theta with the positive x-axis:

M(θ)=(cos2θsin2θsin2θcos2θ)M(\theta) = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}

2.2 Fundamental Properties

PropertyFormula/Result
DeterminantM(θ)=cos22θsin22θ=1\|M(\theta)\| = -\cos^2 2\theta - \sin^2 2\theta = -1
InvolutoryM(θ)2=IM(\theta)^2 = I
Self-inverseM(θ)1=M(θ)M(\theta)^{-1} = M(\theta)
OrthogonalM(θ)M(θ)T=IM(\theta) \cdot M(\theta)^T = I
TypeImproper orthogonal (det = −1)
Tracetr(M)=0\text{tr}(M) = 0

2.3 Powers

Since M2=IM^2 = I: Mn={Iif n evenMif n oddM^n = \begin{cases} I & \text{if } n \text{ even} \\ M & \text{if } n \text{ odd} \end{cases}

2.4 Special Cases

Line of Reflectionθ\thetaMatrix
x-axis00(1001)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
y-axisπ2\frac{\pi}{2}(1001)\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}
Line y=xy = xπ4\frac{\pi}{4}(0110)\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
Line y=xy = -x3π4\frac{3\pi}{4}(0110)\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}

2.5 Relation to Rotation

M(θ)=R(2θ)M(0)M(\theta) = R(2\theta) \cdot M(0)

Reflection = Rotation followed by reflection across x-axis.


Part III: The 90° Rotation Matrix (Special Case)

3.1 Definition

J=R(π2)=(0110)J = R\left(\frac{\pi}{2}\right) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}

3.2 Remarkable Properties

PropertyResult
J2J^2I-I
J3J^3J-J
J4J^4II
PeriodicPeriod 4
Eigenvalues±i\pm i
Trace00
Determinant11

3.3 Cyclic Pattern

Jn={In0(mod4)Jn1(mod4)In2(mod4)Jn3(mod4)J^n = \begin{cases} I & n \equiv 0 \pmod{4} \\ J & n \equiv 1 \pmod{4} \\ -I & n \equiv 2 \pmod{4} \\ -J & n \equiv 3 \pmod{4} \end{cases}

3.4 The "Matrix i"

JJ behaves like the imaginary unit ii in matrix form:

  • J2=IJ^2 = -I (like i2=1i^2 = -1)
  • Any matrix aI+bJaI + bJ behaves like complex number a+bia + bi

Part IV: Projection Matrices

4.1 Projection onto a Line

Projection onto line making angle θ\theta with x-axis:

P(θ)=(cos2θsinθcosθsinθcosθsin2θ)P(\theta) = \begin{pmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{pmatrix}

4.2 Properties

PropertyResult
IdempotentP2=PP^2 = P
DeterminantP=0\|P\| = 0
Tracetr(P)=1\text{tr}(P) = 1
Rank11
Eigenvalues0,10, 1
SymmetricYes

4.3 Complement Projection

Projection onto the perpendicular line: P(θ)=IP(θ)=P(θ+π2)P_\perp(\theta) = I - P(\theta) = P\left(\theta + \frac{\pi}{2}\right)

4.4 Relation to Reflection

M(θ)=2P(θ)IM(\theta) = 2P(\theta) - I

Or equivalently: P(θ)=I+M(θ)2P(\theta) = \frac{I + M(\theta)}{2}


Part V: The Symmetric Trig Matrix

5.1 Common Form

A=(1+sin2θsinθcosθsinθcosθ1+cos2θ)A = \begin{pmatrix} 1 + \sin^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & 1 + \cos^2\theta \end{pmatrix}

5.2 Properties

A=(1+sin2θ)(1+cos2θ)sin2θcos2θ|A| = (1 + \sin^2\theta)(1 + \cos^2\theta) - \sin^2\theta\cos^2\theta =1+sin2θ+cos2θ+sin2θcos2θsin2θcos2θ= 1 + \sin^2\theta + \cos^2\theta + \sin^2\theta\cos^2\theta - \sin^2\theta\cos^2\theta =1+1=2= 1 + 1 = 2

Always a constant! Independent of θ\theta.


Part VI: 3×3 Rotation Matrices

6.1 Rotation about x-axis

Rx(θ)=(1000cosθsinθ0sinθcosθ)R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}

6.2 Rotation about y-axis

Ry(θ)=(cosθ0sinθ010sinθ0cosθ)R_y(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}

6.3 Rotation about z-axis

Rz(θ)=(cosθsinθ0sinθcosθ0001)R_z(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}

6.4 Common Properties

All 3D rotation matrices satisfy:

  • R=1|R| = 1
  • RT=R1R^T = R^{-1}
  • Rn(θ)=R(nθ)R^n(\theta) = R(n\theta)
  • Eigenvalues: 1,eiθ,eiθ1, e^{i\theta}, e^{-i\theta}

Part VII: Determinant Patterns with Trig Elements

7.1 The Classic Determinant

1cosαcosβcosα1cosγcosβcosγ1\begin{vmatrix} 1 & \cos\alpha & \cos\beta \\ \cos\alpha & 1 & \cos\gamma \\ \cos\beta & \cos\gamma & 1 \end{vmatrix}

This equals zero when α,β,γ\alpha, \beta, \gamma are angles of a triangle (since α+β+γ=π\alpha + \beta + \gamma = \pi).

7.2 Vandermonde-like Trig Determinant

1sinαcosα1sinβcosβ1sinγcosγ\begin{vmatrix} 1 & \sin\alpha & \cos\alpha \\ 1 & \sin\beta & \cos\beta \\ 1 & \sin\gamma & \cos\gamma \end{vmatrix}

7.3 The Magic Determinant

cos(AB)cos(BC)cos(CA)cos(A+B)cos(B+C)cos(C+A)sin(A+B)sin(B+C)sin(C+A)=0\begin{vmatrix} \cos(A-B) & \cos(B-C) & \cos(C-A) \\ \cos(A+B) & \cos(B+C) & \cos(C+A) \\ \sin(A+B) & \sin(B+C) & \sin(C+A) \end{vmatrix} = 0

This is always zero regardless of A,B,CA, B, C!

7.4 sin²/cos² Determinants

sin2AcotA1sin2BcotB1sin2CcotC1=0 when A+B+C=π\begin{vmatrix} \sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1 \end{vmatrix} = 0 \text{ when } A + B + C = \pi


Part VIII: JEE Previous Year Questions

PYQ 1: JEE Main 2018

Problem: Let A=(cosθsinθsinθcosθ)A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}. Find A50A^{50} when θ=π12\theta = \frac{\pi}{12}.

Solution:

Using R(θ)n=R(nθ)R(\theta)^n = R(n\theta):

A50=R(50π12)=R(25π6)A^{50} = R\left(\frac{50\pi}{12}\right) = R\left(\frac{25\pi}{6}\right)

Reduce the angle: 25π6=4π+π6=π6(mod2π)\frac{25\pi}{6} = 4\pi + \frac{\pi}{6} = \frac{\pi}{6} \pmod{2\pi}

A50=R(π6)=(cosπ6sinπ6sinπ6cosπ6)=(32121232)A^{50} = R\left(\frac{\pi}{6}\right) = \begin{pmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6} \\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix} = \boxed{\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}}


PYQ 2: JEE Main 2020

Problem: If A=(cosαsinαsinαcosα)A = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} and A+AT=IA + A^T = I, find α\alpha.

Solution:

A+AT=(cosαsinαsinαcosα)+(cosαsinαsinαcosα)A + A^T = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} + \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix}

=(2cosα002cosα)=2cosαI= \begin{pmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{pmatrix} = 2\cos\alpha \cdot I

Given: A+AT=IA + A^T = I

2cosα=1    cosα=122\cos\alpha = 1 \implies \cos\alpha = \frac{1}{2}

α=π3 (principal value)\alpha = \boxed{\frac{\pi}{3}} \text{ (principal value)}


PYQ 3: JEE Main 2019

Problem: If A=(cosθsinθsinθcosθ)A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, then find the value of θ\theta for which AA is an identity matrix.

Solution:

For A=IA = I: cosθ=1 and sinθ=0\cos\theta = 1 \text{ and } \sin\theta = 0

θ=2nπ,nZ\theta = 2n\pi, \quad n \in \mathbb{Z}

Principal value: θ=0\boxed{\theta = 0}


PYQ 4: JEE Advanced 2016

Problem: Let P=(32121232)P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, A=(1101)A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, and Q=PAPTQ = PAP^T. If PTQ2023P=(abcd)P^TQ^{2023}P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, find a+b+c+da + b + c + d.

Solution:

First, recognize P=R(π6)P = R\left(-\frac{\pi}{6}\right) (rotation by 30°-30°).

Note: PT=P1=R(π6)P^T = P^{-1} = R\left(\frac{\pi}{6}\right)

Q=PAPTQ = PAP^T

PTQnP=PT(PAPT)nPP^TQ^nP = P^T(PAP^T)^nP

Using the property (PAPT)n=PAnPT(PAP^T)^n = PA^nP^T:

PTQnP=PTPAnPTP=AnP^TQ^nP = P^T \cdot PA^nP^T \cdot P = A^n

So we need A2023A^{2023}.

A=I+NA = I + N where N=(0100)N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, and N2=ON^2 = O.

A2023=(I+N)2023=I+2023N=(1202301)A^{2023} = (I + N)^{2023} = I + 2023N = \begin{pmatrix} 1 & 2023 \\ 0 & 1 \end{pmatrix}

a+b+c+d=1+2023+0+1=2025a + b + c + d = 1 + 2023 + 0 + 1 = \boxed{2025}


PYQ 5: JEE Main 2021

Problem: If A=(cos2θsin2θsin2θcos2θ)A = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} and A5=(abcd)A^5 = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, find a2+b2+c2+d2a^2 + b^2 + c^2 + d^2.

Solution:

AA is a reflection matrix, so A2=IA^2 = I.

A5=A4A=(A2)2A=I2A=AA^5 = A^4 \cdot A = (A^2)^2 \cdot A = I^2 \cdot A = A

So (abcd)=(cos2θsin2θsin2θcos2θ)\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}

a2+b2+c2+d2=cos22θ+sin22θ+sin22θ+cos22θa^2 + b^2 + c^2 + d^2 = \cos^2 2\theta + \sin^2 2\theta + \sin^2 2\theta + \cos^2 2\theta =1+1=2= 1 + 1 = \boxed{2}


PYQ 6: JEE Main 2022

Problem: Evaluate: sin2xcos2x1cos2xsin2x110122\begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix}

Solution:

C1+C2C_1 + C_2: First two columns add to give sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 in rows 1, 2.

=sin2x11cos2x111022= \begin{vmatrix} \sin^2 x & 1 & 1 \\ \cos^2 x & 1 & 1 \\ -10 & 2 & 2 \end{vmatrix}

Columns 2 and 3 are identical!

=0\boxed{= 0}


PYQ 7: JEE Main 2023

Problem: If f(θ)=1sinθ1sinθ1sinθ1sinθ1f(\theta) = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix}, then f(θ)f(\theta) lies in the range:

Solution:

Expand along R1: f(θ)=1(1+sin2θ)sinθ(sinθ+sinθ)+1(sin2θ+1)f(\theta) = 1(1 + \sin^2\theta) - \sin\theta(-\sin\theta + \sin\theta) + 1(\sin^2\theta + 1) =(1+sin2θ)0+(1+sin2θ)= (1 + \sin^2\theta) - 0 + (1 + \sin^2\theta) =2(1+sin2θ)= 2(1 + \sin^2\theta) =2+2sin2θ= 2 + 2\sin^2\theta

Since 0sin2θ10 \leq \sin^2\theta \leq 1: 2f(θ)42 \leq f(\theta) \leq 4

Range: [2,4]\boxed{[2, 4]}


PYQ 8: JEE Advanced 2019

Problem: Let ω=ei2π3\omega = e^{i\frac{2\pi}{3}} and A=(1111ωω21ω2ω4)A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{pmatrix}. Then A3A^3 equals:

Solution:

This is related to the DFT matrix. Note that ω3=1\omega^3 = 1 and 1+ω+ω2=01 + \omega + \omega^2 = 0.

First, find A2A^2 or observe the pattern.

For this specific matrix (scaled DFT matrix): AAˉ=3IA \cdot \bar{A} = 3I

After calculation: A2=(300003030)A^2 = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}

A3=A2A=3(1111ω2ω41ωω2)=3AˉA^3 = A^2 \cdot A = 3 \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega^4 \\ 1 & \omega & \omega^2 \end{pmatrix} = 3\bar{A}

But more directly, for this DFT-type matrix: A3=33/2P=33PA^3 = 3^{3/2} \cdot P = 3\sqrt{3} \cdot P

After careful computation: A3=3Aˉ\boxed{A^3 = 3\bar{A}} or equivalently a specific matrix form.


PYQ 9: JEE Main 2019

Problem: If A=(0110)A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} (the 90° rotation matrix), find (I+A)100(I + A)^{100}.

Solution:

Note: A=JA = J where J2=IJ^2 = -I, J4=IJ^4 = I.

Let's compute (I+A)2(I + A)^2 first: (I+A)2=I+2A+A2=I+2AI=2A(I + A)^2 = I + 2A + A^2 = I + 2A - I = 2A

(I+A)4=(2A)2=4A2=4I(I + A)^4 = (2A)^2 = 4A^2 = -4I

(I+A)8=(4I)2=16I(I + A)^8 = (-4I)^2 = 16I

(I+A)16=256I(I + A)^{16} = 256I

(I+A)32=2562I(I + A)^{32} = 256^2 I

(I+A)64=2564I(I + A)^{64} = 256^4 I

(I+A)96=2566I=248I(I + A)^{96} = 256^6 I = 2^{48}I

(I+A)100=(I+A)96(I+A)4=248I(4I)=250I(I + A)^{100} = (I + A)^{96} \cdot (I + A)^4 = 2^{48}I \cdot (-4I) = -2^{50}I

=250(1001)= \boxed{-2^{50}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}


PYQ 10: JEE Main 2020

Problem: If the matrix A=(cos2θcosθsinθcosθsinθsin2θ)A = \begin{pmatrix} \cos^2\theta & \cos\theta\sin\theta \\ \cos\theta\sin\theta & \sin^2\theta \end{pmatrix} and B=(cos2ϕcosϕsinϕcosϕsinϕsin2ϕ)B = \begin{pmatrix} \cos^2\phi & \cos\phi\sin\phi \\ \cos\phi\sin\phi & \sin^2\phi \end{pmatrix}, when is AB=OAB = O?

Solution:

Both AA and BB are projection matrices.

AA projects onto the line at angle θ\theta. BB projects onto the line at angle ϕ\phi.

AB=OAB = O when the lines are perpendicular: θϕ=±π2\theta - \phi = \pm\frac{\pi}{2}

Or: θ=ϕ±π2\boxed{\theta = \phi \pm \frac{\pi}{2}}

Verification: When θ=0\theta = 0, ϕ=π2\phi = \frac{\pi}{2}: A=(1000),B=(0001)A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} AB=(0000)=OAB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \quad ✓


Part IX: Quick Reference Tables

Rotation Matrix R(θ)R(\theta)

PropertyValue
R(θ)nR(\theta)^nR(nθ)R(n\theta)
R(α)R(β)R(\alpha)R(\beta)R(α+β)R(\alpha + \beta)
R(θ)1R(\theta)^{-1}R(θ)=R(θ)TR(-\theta) = R(\theta)^T
R(θ)\|R(\theta)\|11
Eigenvaluese±iθe^{\pm i\theta}

Reflection Matrix M(θ)M(\theta)

PropertyValue
M(θ)nM(\theta)^nII (even), MM (odd)
M(θ)1M(\theta)^{-1}M(θ)M(\theta)
M(θ)\|M(\theta)\|1-1
Eigenvalues+1,1+1, -1

90° Rotation JJ

PowerValue
J1J^1JJ
J2J^2I-I
J3J^3J-J
J4J^4II
JnJ^nPeriodic with period 4

Projection Matrix P(θ)P(\theta)

PropertyValue
P2P^2PP
P\|P\|00
tr(P)\text{tr}(P)11
IP(θ)I - P(\theta)P(θ+π2)P(\theta + \frac{\pi}{2})

Part X: Recognition Patterns

How to Identify

Matrix FormTypeKey Property
(cosθsinθsinθcosθ)\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}RotationAn=R(nθ)A^n = R(n\theta)
(cosθsinθsinθcosθ)\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}Reflection (angle θ2\frac{\theta}{2})A2=IA^2 = I
(cos2θsin2θsin2θcos2θ)\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}Reflection (angle θ\theta)A2=IA^2 = I
(cos2θsinθcosθsinθcosθsin2θ)\begin{pmatrix} \cos^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{pmatrix}ProjectionA2=AA^2 = A
(0110)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}90° RotationA4=IA^4 = I, A2=IA^2 = -I

Determinant Shortcuts

Matrix TypeA\|A\|
Rotation11
Reflection1-1
Projection00
(a+sin2θsinθcosθsinθcosθa+cos2θ)\begin{pmatrix} a + \sin^2\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & a + \cos^2\theta \end{pmatrix}a(a+1)a(a+1)

Conclusion

Trigonometric matrices are elegant because:

  1. Rotation matrices convert powers to simple angle multiplication
  2. Reflection matrices are involutory — all high powers reduce to II or MM
  3. Projection matrices are idempotent — all powers equal PP
  4. Determinants often simplify using sin2+cos2=1\sin^2 + \cos^2 = 1

JEE Strategy:

  • Recognize the matrix type FIRST
  • Apply the appropriate power formula
  • Use periodicity to reduce large exponents
  • Look for trig identities hiding in determinants

Master these patterns, and trigonometric matrix problems become almost trivial!


Last updated: January 2026 | Essential for JEE Main & Advanced

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Matrices Determinants PYQs