Indefinite Integration7 min read

Mastering ∫ sin^m(x) cos^n(x) dx

Integrals of the form ∫ sin^m(x) cos^n(x) dx are a staple in JEE Main and Advanced. Appearing both as direct questions and crucial intermediate steps, fluency with these techniques saves time and builds confidence. This guide systematically breaks down the three core strategies, supported by solved...

integrationtrigonometricsin-costechniques

Mastering ∫ sin^m(x) cos^n(x) dx — A Complete Guide for JEE Main

Introduction

Integrals of the form ∫ sin^m(x) cos^n(x) dx are a staple in JEE Main and Advanced. Appearing both as direct questions and crucial intermediate steps, fluency with these techniques saves time and builds confidence. This guide systematically breaks down the three core strategies, supported by solved examples and previous JEE questions.


Strategy 1: One Power is Odd — The Substitution Method

Core Idea

When m or n is an odd positive integer, factor out one trigonometric function to pair with dx, then substitute using the Pythagorean identity.

Procedure

  • If m (power of sin x) is odd: Let u = cos x, then -sin x dx = du.
    Use sin²x = 1 – cos²x to convert the remaining even power of sin x.
  • If n (power of cos x) is odd: Let u = sin x, then cos x dx = du.
    Use cos²x = 1 – sin²x to convert the remaining even power of cos x.

Example 1: ∫ sin³x cos⁴x dx

Here, sin x has an odd power (3). Let u = cos xdu = –sin x dx.

sin3xcos4xdx=sin2xcos4x(sinxdx)=(1cos2x)cos4x(sinxdx)=(1u2)u4du=(u4u6)du=(u55u77)+C=cos5x5+cos7x7+C\begin{aligned} \int \sin^3 x \cos^4 x \, dx &= \int \sin^2 x \cdot \cos^4 x \cdot (\sin x \, dx) \\ &= \int (1 - \cos^2 x) \cos^4 x \cdot (\sin x \, dx) \\ &= -\int (1 - u^2) u^4 \, du \\ &= -\int (u^4 - u^6) \, du \\ &= -\left( \frac{u^5}{5} - \frac{u^7}{7} \right) + C \\ &= \boxed{-\frac{\cos^5 x}{5} + \frac{\cos^7 x}{7} + C} \end{aligned}


Strategy 2: Both Powers are Even — Power-Reduction Formulas

Core Idea

When m and n are both even, repeatedly apply the half-angle identities to reduce the powers until a simple trigonometric integral is obtained.

Essential Identities

sin2x=1cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}, \quad \sin x \cos x = \frac{\sin 2x}{2}

Example 2: ∫ sin⁴x cos²x dx

Both powers are even.

sin4xcos2xdx=(sin2x)2cos2xdx=(1cos2x2)2(1+cos2x2)dx=18(1cos2x)2(1+cos2x)dx=18(1cos2xcos22x+cos32x)dx(Expand carefully)After simplification and integrating term by term:=x16sin4x64+sin32x48+C\begin{aligned} \int \sin^4 x \cos^2 x \, dx &= \int (\sin^2 x)^2 \cos^2 x \, dx \\ &= \int \left( \frac{1 - \cos 2x}{2} \right)^2 \left( \frac{1 + \cos 2x}{2} \right) dx \\ &= \frac{1}{8} \int (1 - \cos 2x)^2 (1 + \cos 2x) \, dx \\ &= \frac{1}{8} \int (1 - \cos 2x - \cos^2 2x + \cos^3 2x) \, dx \quad \text{(Expand carefully)} \\ &\text{After simplification and integrating term by term:} \\ &= \boxed{\frac{x}{16} - \frac{\sin 4x}{64} + \frac{\sin^3 2x}{48} + C} \end{aligned} Note: The key is patient expansion and applying power-reduction again if needed.


Strategy 3: (m + n) is a Negative Even Integer — The Tangent Substitution

Core Idea

When m + n is a negative even integer (e.g., –2, –4), the integrand can often be expressed in terms of tan x and sec²x. The substitution tan x = t then rationalizes the integral.

Why It Works

tanx=tsec2xdx=dtandsec2x=1+t2\tan x = t \quad \Rightarrow \quad \sec^2 x \, dx = dt \quad \text{and} \quad \sec^2 x = 1 + t^2 Expressing sin x and cos x in terms of t converts the integral into a rational function in t.

Example 3: ∫ dx / (sin⁴x cos²x)

Here, m = –4, n = –2 ⇒ m + n = –6 (negative even integer).

\begin{aligned} \int \frac{dx}{\sin^4 x \cos^2 x} &= \int \frac{\sec^6 x}{\tan^4 x} \, dx \quad \text{(Multiply numerator & denominator by\sec^6 x)} \\ &= \int \frac{(1 + \tan^2 x)^2 \sec^2 x}{\tan^4 x} \, dx \end{aligned} Let t = tan xdt = sec²x dx. =(1+t2)2t4dt=(t4+2t2+1)dt= \int \frac{(1 + t^2)^2}{t^4} \, dt = \int (t^{-4} + 2t^{-2} + 1) \, dt =13t32t+t+C= -\frac{1}{3t^3} - \frac{2}{t} + t + C =13tan3x2cotx+tanx+C= \boxed{-\frac{1}{3\tan^3 x} - 2\cot x + \tan x + C}


JEE Main Previous Year Questions (PYQs) – Solved

PYQ 1 (JEE Main 2021): A Definite Integral Trick

Evaluate: I=0π/2sin3xsin3x+cos3xdx\displaystyle I = \int_0^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx

Solution: Use the property 0af(x)dx=0af(ax)dx\int_0^a f(x)\,dx = \int_0^a f(a-x)\,dx.

I=0π/2sin3(π2x)sin3(π2x)+cos3(π2x)dx=0π/2cos3xcos3x+sin3xdxI = \int_0^{\pi/2} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin^3\left(\frac{\pi}{2} - x\right) + \cos^3\left(\frac{\pi}{2} - x\right)} \, dx = \int_0^{\pi/2} \frac{\cos^3 x}{\cos^3 x + \sin^3 x} \, dx

Adding the original and transformed integrals: 2I=0π/2sin3x+cos3xsin3x+cos3xdx=0π/21dx=π22I = \int_0^{\pi/2} \frac{\sin^3 x + \cos^3 x}{\sin^3 x + \cos^3 x} \, dx = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2} I=π4\boxed{I = \frac{\pi}{4}}

PYQ 2: Combining Strategies

Evaluate: sin5xcos4xdx\displaystyle \int \frac{\sin^5 x}{\cos^4 x} \, dx

Solution: Here, sin x has an odd power (5). Let u = cos xdu = –sin x dx. sin5xcos4xdx=(sin2x)2sinxcos4xdx=(1cos2x)2cos4x(sinxdx)=(1u2)2u4du=(u42u2+1)du=13u32uu+C=13cos3x2secxcosx+C\begin{aligned} \int \frac{\sin^5 x}{\cos^4 x} \, dx &= \int \frac{(\sin^2 x)^2 \cdot \sin x}{\cos^4 x} \, dx \\ &= \int \frac{(1 - \cos^2 x)^2}{\cos^4 x} \cdot (\sin x \, dx) \\ &= -\int \frac{(1 - u^2)^2}{u^4} \, du \\ &= -\int (u^{-4} - 2u^{-2} + 1) \, du \\ &= \frac{1}{3u^3} - \frac{2}{u} - u + C \\ &= \boxed{\frac{1}{3\cos^3 x} - 2\sec x - \cos x + C} \end{aligned}


Essential Formulas & Identities

Power-Reduction & Simplification

PurposeFormula
Basic Reductionsin2x=1cos2x2,cos2x=1+cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}
Productsinxcosx=sin2x2\sin x \cos x = \frac{\sin 2x}{2}
Higher Powerssin3x=3sinxsin3x4,cos3x=3cosx+cos3x4\sin^3 x = \frac{3\sin x - \sin 3x}{4}, \quad \cos^3 x = \frac{3\cos x + \cos 3x}{4}
Useful Identitiessin4x+cos4x=12sin2xcos2x\sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x
sin6x+cos6x=13sin2xcos2x\sin^6 x + \cos^6 x = 1 - 3\sin^2 x \cos^2 x

Common Pitfalls & How to Avoid Them

  1. Incorrect Substitution: If sin x has an odd power, substitute for cos x. Don't choose the function whose power is odd.
  2. Sign Errors: When setting u=cosxu = \cos x, remember du=sinxdxdu = -\sin x \, dx. It's easy to drop the negative.
  3. Overlooking the Hidden Trick: For integrals like dxsin4xcos2x\int \frac{dx}{\sin^4 x \cos^2 x}, always check the sum of the exponents m+nm+n. If it's a negative even integer, t=tanxt = \tan x is the fastest route.
  4. Incomplete Reduction: When both powers are even, apply the half-angle formulas repeatedly until all powers are linear in cos(kx)\cos(kx).
  5. Forgetting +C+C: Always add the constant of integration in indefinite integrals.

Practice Problems for Self-Assessment

  1. sin3xcos5xdx\displaystyle \int \sin^3 x \cos^5 x \, dx
  2. sin2xcos4xdx\displaystyle \int \sin^2 x \cos^4 x \, dx
  3. dxsin2xcos4x\displaystyle \int \frac{dx}{\sin^2 x \cos^4 x} (Hint: m+n = –6)
  4. 0π/2sin4xdx\displaystyle \int_0^{\pi/2} \sin^4 x \, dx
  5. sin3xcosxdx\displaystyle \int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx

Final Strategic Summary

To solve sinm(x)cosn(x)dx\int \sin^m(x) \cos^n(x) \, dx efficiently:

  1. Step 1: Check the exponents.
  2. Step 2:
    • If m or n is odd: Use substitution. Let uu be the trigonometric function with the even power.
    • If both m and n are even: Use power-reduction/half-angle formulas.
    • If m+n is a negative even integer: Use the substitution t=tanxt = \tan x.
  3. Step 3: For definite integrals over [0,π/2][0, \pi/2], remember the property 0af(x)dx=0af(ax)dx\int_0^{a} f(x)dx = \int_0^{a} f(a-x)dx to simplify tricky integrands.

Mastery of these patterns, combined with practice on past JEE problems, will make these integrals a source of marks, not stress.


Best wishes for your JEE preparation! 🚀

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs