Indefinite Integration7 min read

The "Kuturu" Trick: Standard Linear/Quadratic Form Integration

For integrals of the form: I = \int \frac{dx}{ax^2 + bx + c} The conventional approach involves completing the square, which is time-consuming and prone to algebraic errors. The "Kuturu Trick" provides direct formulas based on the discriminant \(D = b^2 - 4ac\), allowing you to write down the...

integrationkuturutrickrational-functions

The "Kuturu" Trick: Standard Linear/Quadratic Form Integration

🎯 The Strategic Insight

For integrals of the form: I=dxax2+bx+cI = \int \frac{dx}{ax^2 + bx + c} The conventional approach involves completing the square, which is time-consuming and prone to algebraic errors. The "Kuturu Trick" provides direct formulas based on the discriminant D=b24acD = b^2 - 4ac, allowing you to write down the answer in seconds once you identify aa, bb, cc, and compute DD.

This method is exceptionally powerful for JEE because these integrals appear frequently, and the discriminant immediately tells you the form of the answer.


📐 The Core Formulas (Memorize These)

Case 1: D<0D < 0 (Complex Roots) → Arctangent Form

When the quadratic has no real roots (4ac>b24ac > b^2), the integral yields an inverse tangent function.

dxax2+bx+c=24acb2tan1(2ax+b4acb2)+C\boxed{\int \frac{dx}{ax^2 + bx + c} = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \left( \frac{2ax + b}{\sqrt{4ac - b^2}} \right) + C}

Memory Aid: "Negative Discriminant → Negative under root → Use Arctan".

Case 2: D>0D > 0 (Distinct Real Roots) → Logarithmic Form

When the quadratic has two distinct real roots, the integral yields a logarithmic expression.

dxax2+bx+c=1b24acln2ax+bb24ac2ax+b+b24ac+C\boxed{\int \frac{dx}{ax^2 + bx + c} = \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C}

Memory Aid: "Positive Discriminant → Positive roots → Use Log".

Case 3: D=0D = 0 (Repeated Real Root) → Simple Reciprocal

When the quadratic is a perfect square:

dxax2+bx+c=dxa(xα)2=1a(xα)+C\int \frac{dx}{ax^2 + bx + c} = \int \frac{dx}{a(x - \alpha)^2} = -\frac{1}{a(x - \alpha)} + C where α=b2a\alpha = -\frac{b}{2a} is the repeated root.


🔍 The Three-Step Execution

  1. Identify Coefficients: Extract aa, bb, cc from ax2+bx+cax^2 + bx + c.
  2. Compute Discriminant: D=b24acD = b^2 - 4ac.
  3. Apply the Formula: Based on the sign of DD, plug into the correct formula.

📝 JEE Main Problems Solved in Seconds

Example 1: Classic Quadratic

Question: dxx22x+10\int \frac{dx}{x^2 - 2x + 10}.

Kuturu Solution (30 seconds):

  1. a=1, b=2, c=10a = 1,\ b = -2,\ c = 10.
  2. D=(2)24110=440=36<0D = (-2)^2 - 4\cdot1\cdot10 = 4 - 40 = -36 < 0 → Use Arctan form.
  3. 4acb2=404=36=6\sqrt{4ac - b^2} = \sqrt{40 - 4} = \sqrt{36} = 6.
  4. Apply formula: dxx22x+10=26tan1(2x26)+C=13tan1(x13)+C\int \frac{dx}{x^2 - 2x + 10} = \frac{2}{6} \tan^{-1}\left( \frac{2x - 2}{6} \right) + C = \frac{1}{3} \tan^{-1}\left( \frac{x-1}{3} \right) + C

Answer: 13tan1(x13)+C\boxed{\frac{1}{3} \tan^{-1}\left( \frac{x-1}{3} \right) + C}


Example 2: Quadratic with Real Roots

Question: dxx2+x2\int \frac{dx}{x^2 + x - 2}.

Kuturu Solution (30 seconds):

  1. a=1, b=1, c=2a = 1,\ b = 1,\ c = -2.
  2. D=1241(2)=1+8=9>0D = 1^2 - 4\cdot1\cdot(-2) = 1 + 8 = 9 > 0 → Use Log form.
  3. D=3\sqrt{D} = 3.
  4. 2ax+b=2x+12ax + b = 2x + 1.
  5. Apply formula: dxx2+x2=13ln2x+132x+1+3+C=13lnx1x+2+C\int \frac{dx}{x^2 + x - 2} = \frac{1}{3} \ln \left| \frac{2x + 1 - 3}{2x + 1 + 3} \right| + C = \frac{1}{3} \ln \left| \frac{x - 1}{x + 2} \right| + C

Answer: 13lnx1x+2+C\boxed{\frac{1}{3} \ln \left| \frac{x - 1}{x + 2} \right| + C}


Example 3: Non-Monic Quadratic (JEE Main Style)

Question: dx2x2+5x+3\int \frac{dx}{2x^2 + 5x + 3}.

Kuturu Solution (40 seconds):

  1. a=2, b=5, c=3a = 2,\ b = 5,\ c = 3.
  2. D=52423=2524=1>0D = 5^2 - 4\cdot2\cdot3 = 25 - 24 = 1 > 0 → Use Log form.
  3. D=1\sqrt{D} = 1.
  4. 2ax+b=4x+52ax + b = 4x + 5.
  5. Apply formula: dx2x2+5x+3=11ln4x+514x+5+1+C=ln4x+44x+6+C=ln2x+22x+3+C\int \frac{dx}{2x^2 + 5x + 3} = \frac{1}{1} \ln \left| \frac{4x + 5 - 1}{4x + 5 + 1} \right| + C = \ln \left| \frac{4x + 4}{4x + 6} \right| + C = \ln \left| \frac{2x + 2}{2x + 3} \right| + C (The factor of 2 inside the log can be absorbed into the constant CC).

Answer: ln2x+22x+3+C\boxed{\ln \left| \frac{2x + 2}{2x + 3} \right| + C} or equivalently lnx+12x+3+C\ln \left| \frac{x + 1}{2x + 3} \right| + C'.


🧮 Why It Works: The Derivation (For Understanding)

The trick is essentially completing the square in a disguised, pre-compiled form.

For D<0D < 0: ax2+bx+c=a[(x+b2a)2+4acb24a2]ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}\right] The standard integral dxx2+k2=1ktan1xk\int \frac{dx}{x^2 + k^2} = \frac{1}{k} \tan^{-1}\frac{x}{k} applies, leading to the arctan formula.

For D>0D > 0: ax2+bx+c=a(xα)(xβ)ax^2 + bx + c = a(x - \alpha)(x - \beta) Partial fractions decomposition 1a(xα)(xβ)=1a(αβ)(1xα1xβ)\frac{1}{a(x-\alpha)(x-\beta)} = \frac{1}{a(\alpha-\beta)}\left(\frac{1}{x-\alpha} - \frac{1}{x-\beta}\right) leads, upon integration, to the logarithmic form.


🔄 Extended Forms and Variations

The same logic applies to related integrals. Once you recognize the pattern, you can handle variations quickly.

Variation 1: Numerator is the Derivative

2ax+bax2+bx+cdx=lnax2+bx+c+C\int \frac{2ax + b}{ax^2 + bx + c} \, dx = \ln|ax^2 + bx + c| + C This is immediate by recognition (uu-substitution with u=ax2+bx+cu = ax^2 + bx + c).

Variation 2: General Linear Numerator

For px+qax2+bx+cdx\int \frac{px + q}{ax^2 + bx + c} dx:

  1. Express px+q=p2a(2ax+b)+(qpb2a)px + q = \frac{p}{2a}(2ax + b) + \left(q - \frac{pb}{2a}\right).
  2. Split the integral: px+qax2+bx+cdx=p2a2ax+bax2+bx+cdx+(qpb2a)dxax2+bx+c\int \frac{px+q}{ax^2+bx+c}dx = \frac{p}{2a}\int \frac{2ax+b}{ax^2+bx+c}dx + \left(q-\frac{pb}{2a}\right)\int \frac{dx}{ax^2+bx+c}
  3. The first part integrates to a log. The second part uses the Kuturu formula.

Variation 3: Integrals with Square Roots

For dxax2+bx+c\int \frac{dx}{\sqrt{ax^2 + bx + c}}, the discriminant again dictates the form (inverse hyperbolic sin for D<0,a>0D<0, a>0, inverse sin for a<0a<0, and a different log form for D>0D>0). The key is always to check DD first.


📊 Decision Framework for JEE


⚠️ Common Pitfalls & Safeguards

PitfallExampleSafeguard
Wrong sign in √(4ac-b²)For x2+1x^2+1, D=4D = -4. √(4ac-b²) = √(411 - 0) = 2, not √(-4).Remember: For D<0D<0, formula uses √(4ac-b²), which is positive.
Forgetting the factor of 2 in numerator for Arctan form.Writing tan1(x13)\tan^{-1}\left(\frac{x-1}{3}\right) instead of tan1(2x26)\tan^{-1}\left(\frac{2x-2}{6}\right).The formula has 2ax+b2ax+b in the numerator. Derive it faithfully.
Mis-simplifying the Log argument when D>0D>0.Not simplifying 2x22x+4\frac{2x-2}{2x+4} to x1x+2\frac{x-1}{x+2}.Always factor common terms in the log argument to match simplified options.
Ignoring absolute value in log form for indefinite integrals.Writing ln(x1x+2)\ln(\frac{x-1}{x+2}) instead of lnx1x+2\ln\|\frac{x-1}{x+2}\|.The domain of the original integrand may exclude points; the absolute value ensures the log is defined.

📌 Practice for Fluency (Solve in 1 minute each)

  1. dxx2+6x+13\int \frac{dx}{x^2 + 6x + 13}
    Ans: 12tan1(x+32)+C\frac{1}{2} \tan^{-1}\left(\frac{x+3}{2}\right) + C

  2. dx3x2+5x+1\int \frac{dx}{3x^2 + 5x + 1}
    Ans: 113ln6x+5136x+5+13+C\frac{1}{\sqrt{13}} \ln \left| \frac{6x+5-\sqrt{13}}{6x+5+\sqrt{13}} \right| + C

  3. dx4x24x+1\int \frac{dx}{4x^2 - 4x + 1} (Hint: D=0D=0)
    Ans: 14x2+C-\frac{1}{4x-2} + C or 12(2x1)+C-\frac{1}{2(2x-1)} + C

  4. JEE Main 2021 Style: If cosθdθ5+7sinθ2cos2θ=AlnB(θ)+C\int \frac{\cos\theta\, d\theta}{5+7\sin\theta-2\cos^2\theta} = A\ln\|B(\theta)\|+C, find AA.
    Hint: Let t=sinθt=\sin\theta, then use Kuturu trick on resulting quadratic in tt.


Final Strategic Summary

  1. First Step is Always D: For any integral of rational functions (especially denominators), compute the discriminant immediately.
  2. Sign Dictates Form: Negative D → Arctan. Positive D → Log. Zero D → Simple power rule.
  3. The Formula is Reliable: It's mathematically sound, not a guess. You can derive it if needed, but in the exam, apply it directly.
  4. Check Against Options: In JEE MCQs, your result might look different from an option due to algebraic simplification (e.g., ln2x+4=ln2+lnx+2\ln|2x+4| = \ln2 + \ln|x+2|, and ln2\ln2 merges with CC). Factor arguments completely to match.
  5. Time Saving is Immense: This trick can solve in 30 seconds what takes 3+ minutes via completing the square and standard integration.

By mastering this pattern, you turn a whole class of integration problems into routine calculations, freeing up time and mental energy for the more innovative challenges in the paper.


"In integration, recognizing the pattern is half the battle. The Kuturu trick wins that battle in one move."

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs