Indefinite Integration6 min read

The Exponential "Magic" Shortcut

This is the most frequently tested shortcut in JEE Main for indefinite integration. Whenever you see $e^x$ combined with a function and its derivative, you can apply these powerful identities directly.

integrationexponentiale^xshortcuts

The Exponential "Magic" Shortcut

🎯 The Strategy

This is the most frequently tested shortcut in JEE Main for indefinite integration. Whenever you see exe^x combined with a function and its derivative, you can apply these powerful identities directly.


📐 The Core Identities

Identity 1: The Classic exe^x Formula

ex[f(x)+f(x)]dx=exf(x)+C\boxed{\int e^x [f(x) + f'(x)] \, dx = e^x f(x) + C}

This works because: ddx[exf(x)]=exf(x)+exf(x)=ex[f(x)+f(x)]\frac{d}{dx}[e^x f(x)] = e^x f(x) + e^x f'(x) = e^x[f(x) + f'(x)]

Identity 2: The xf(x)xf(x) Extension

[f(x)+xf(x)]dx=xf(x)+C\boxed{\int [f(x) + x f'(x)] \, dx = x f(x) + C}

This is essentially the product rule in reverse: ddx[xf(x)]=f(x)+xf(x)\frac{d}{dx}[xf(x)] = f(x) + xf'(x)

Identity 3: The General Exponential Form

eg(x)[f(x)g(x)+f(x)]dx=eg(x)f(x)+C\boxed{\int e^{g(x)} [f(x) \cdot g'(x) + f'(x)] \, dx = e^{g(x)} f(x) + C}


🔍 Pattern Recognition

Look for these telltale signs:

  • exe^x multiplied by a sum of two terms
  • One term looks like a function, the other looks like its derivative
  • The terms share similar structure (same denominator, related powers)

📝 JEE Main Previous Year Examples

Example 1: JEE Main 2019

Question: If ex(1+sinx1+cosx)dx=exf(x)+C\int e^x\left(\frac{1 + \sin x}{1 + \cos x}\right)dx = e^x \cdot f(x) + C, find f(x)f(x).

Solution:

First, simplify the integrand using half-angle formulas:

1+sinx1+cosx=1+2sin(x/2)cos(x/2)2cos2(x/2)\frac{1 + \sin x}{1 + \cos x} = \frac{1 + 2\sin(x/2)\cos(x/2)}{2\cos^2(x/2)}

=12cos2(x/2)+2sin(x/2)cos(x/2)2cos2(x/2)= \frac{1}{2\cos^2(x/2)} + \frac{2\sin(x/2)\cos(x/2)}{2\cos^2(x/2)}

=12sec2(x/2)+tan(x/2)= \frac{1}{2}\sec^2(x/2) + \tan(x/2)

Now the integral becomes: ex[tan(x/2)+12sec2(x/2)]dx\int e^x\left[\tan(x/2) + \frac{1}{2}\sec^2(x/2)\right]dx

Recognize the pattern!

  • Let f(x)=tan(x/2)f(x) = \tan(x/2)
  • Then f(x)=12sec2(x/2)f'(x) = \frac{1}{2}\sec^2(x/2)

This matches: ex[f(x)+f(x)]dx=exf(x)+C\int e^x[f(x) + f'(x)]dx = e^x f(x) + C

Answer: f(x)=tan(x/2)f(x) = \tan(x/2)


Example 2: JEE Main 2021

Question: If (e2x+2exex1)e(ex+ex)dx=g(x)e(ex+ex)+C\int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})}dx = g(x)e^{(e^x + e^{-x})} + C, where CC is a constant of integration, then g(0)g(0) is equal to:

Solution:

Let u=ex+exu = e^x + e^{-x}, so dudx=exex\frac{du}{dx} = e^x - e^{-x}

The integrand can be rewritten: e2x+2exex1=(e2x1)+(2exex)e^{2x} + 2e^x - e^{-x} - 1 = (e^{2x} - 1) + (2e^x - e^{-x})

=(exex)(ex+1)+ex= (e^x - e^{-x})(e^x + 1) + e^x

Hmm, let's try another approach. Factor out strategically:

(e2x+2exex1)=(exex)(ex+1)+ex(e^{2x} + 2e^x - e^{-x} - 1) = (e^x - e^{-x})(e^x + 1) + e^x

Using Identity 3 with g(x)=ex+exg(x) = e^x + e^{-x}: g(x)=exexg'(x) = e^x - e^{-x}

We need: f(x)g(x)+f(x)=e2x+2exex1f(x) \cdot g'(x) + f'(x) = e^{2x} + 2e^x - e^{-x} - 1

If f(x)=exf(x) = e^x, then:

  • f(x)=exf'(x) = e^x
  • f(x)g(x)=ex(exex)=e2x1f(x) \cdot g'(x) = e^x(e^x - e^{-x}) = e^{2x} - 1

So: f(x)g(x)+f(x)=e2x1+exf(x)g'(x) + f'(x) = e^{2x} - 1 + e^x

This doesn't match exactly. Let's try f(x)=ex+1f(x) = e^x + 1:

  • f(x)=exf'(x) = e^x
  • f(x)g(x)=(ex+1)(exex)=e2x1+exexf(x) \cdot g'(x) = (e^x + 1)(e^x - e^{-x}) = e^{2x} - 1 + e^x - e^{-x}

So: f(x)g(x)+f(x)=e2x+2exex1f(x)g'(x) + f'(x) = e^{2x} + 2e^x - e^{-x} - 1

Therefore: g(x)=ex+1g(x) = e^x + 1

Answer: g(0)=e0+1=2g(0) = e^0 + 1 = 2


Example 3: JEE Main 2025

Question: The integral (1+x1x)ex+1xdx\int \left(1 + x - \frac{1}{x}\right)e^{x + \frac{1}{x}}dx is equal to:

Options: (A) (x+1)ex+1x+C(x + 1)e^{x + \frac{1}{x}} + C (B) xex+1x+C-xe^{x + \frac{1}{x}} + C (C) (x1)ex+1x+C(x - 1)e^{x + \frac{1}{x}} + C (D) xex+1x+Cxe^{x + \frac{1}{x}} + C

Solution:

Let g(x)=x+1xg(x) = x + \frac{1}{x}

Then g(x)=11x2g'(x) = 1 - \frac{1}{x^2}

The integrand is: (1+x1x)ex+1x\left(1 + x - \frac{1}{x}\right)e^{x + \frac{1}{x}}

We need to express this as [f(x)g(x)+f(x)]eg(x)[f(x) \cdot g'(x) + f'(x)]e^{g(x)}

1+x1x=x(11x2)+1=xg(x)+11 + x - \frac{1}{x} = x\left(1 - \frac{1}{x^2}\right) + 1 = x \cdot g'(x) + 1

If f(x)=xf(x) = x, then f(x)=1f'(x) = 1

So: f(x)g(x)+f(x)=x(11x2)+1=x1x+1f(x) \cdot g'(x) + f'(x) = x\left(1 - \frac{1}{x^2}\right) + 1 = x - \frac{1}{x} + 1

By Identity 3: (1+x1x)ex+1xdx=xex+1x+C\int \left(1 + x - \frac{1}{x}\right)e^{x + \frac{1}{x}}dx = x \cdot e^{x + \frac{1}{x}} + C

Answer: (D)


Example 4: JEE Main 2018

Question: If x5e4x3dx=148e4x3f(x)+C\int x^5 e^{-4x^3}dx = \frac{1}{48}e^{-4x^3}f(x) + C, where CC is a constant of integration, then f(x)f(x) is equal to:

Options: (A) 4x31-4x^3 - 1 (B) 4x3+14x^3 + 1 (C) 2x31-2x^3 - 1 (D) 2x3+1-2x^3 + 1

Solution:

Let g(x)=4x3g(x) = -4x^3, so g(x)=12x2g'(x) = -12x^2

Rewrite the integrand: x5e4x3=x5eg(x)x^5 e^{-4x^3} = x^5 \cdot e^{g(x)}

We need x5=f(x)g(x)+f(x)=12x2f(x)+f(x)x^5 = f(x) \cdot g'(x) + f'(x) = -12x^2 f(x) + f'(x)

Try f(x)=ax3+bf(x) = ax^3 + b (polynomial guess based on structure):

  • f(x)=3ax2f'(x) = 3ax^2
  • f(x)g(x)=12x2(ax3+b)=12ax512bx2f(x) \cdot g'(x) = -12x^2(ax^3 + b) = -12ax^5 - 12bx^2

So: 12ax512bx2+3ax2=x5-12ax^5 - 12bx^2 + 3ax^2 = x^5

Comparing coefficients:

  • x5x^5: 12a=1a=112-12a = 1 \Rightarrow a = -\frac{1}{12}
  • x2x^2: 12b+3a=0b=a4=148-12b + 3a = 0 \Rightarrow b = \frac{a}{4} = -\frac{1}{48}

So f(x)=112x3148f(x) = -\frac{1}{12}x^3 - \frac{1}{48}

The integral is: 148e4x3(4x31)+C\frac{1}{48}e^{-4x^3} \cdot (-4x^3 - 1) + C

Answer: (A) f(x)=4x31f(x) = -4x^3 - 1


Example 5: JEE Main 2019

Question: esecx(secxtanxf(x)+secxtanx+sec2x)dx=esecxf(x)+C\int e^{\sec x}(\sec x \tan x f(x) + \sec x \tan x + \sec^2 x)dx = e^{\sec x}f(x) + C. Find f(x)f(x).

Solution:

Let g(x)=secxg(x) = \sec x, so g(x)=secxtanxg'(x) = \sec x \tan x

The integrand is: esecx[secxtanxf(x)+secxtanx+sec2x]e^{\sec x}[\sec x \tan x \cdot f(x) + \sec x \tan x + \sec^2 x] =eg(x)[g(x)f(x)+secxtanx+sec2x]= e^{g(x)}[g'(x) \cdot f(x) + \sec x \tan x + \sec^2 x]

For this to match Identity 3, we need: f(x)=secxtanx+sec2xf'(x) = \sec x \tan x + \sec^2 x

Integrating: f(x)=secx+tanxf(x) = \sec x + \tan x

Verification:

  • f(x)=secx+tanxf(x) = \sec x + \tan x
  • f(x)=secxtanx+sec2xf'(x) = \sec x \tan x + \sec^2 x

Answer: f(x)=secx+tanxf(x) = \sec x + \tan x


🔑 Quick Recognition Guide

Integrand PatternResult
ex[f(x)+f(x)]e^x[f(x) + f'(x)]exf(x)+Ce^x f(x) + C
eax[af(x)+f(x)]e^{ax}[af(x) + f'(x)]eaxf(x)+Ce^{ax} f(x) + C
f(x)+xf(x)f(x) + xf'(x)xf(x)+Cxf(x) + C
eg(x)[f(x)g(x)+f(x)]e^{g(x)}[f(x)g'(x) + f'(x)]eg(x)f(x)+Ce^{g(x)}f(x) + C

💡 How to Spot the Pattern

  1. Look for e(something)e^{(\text{something})} in the integrand
  2. Identify what's being multiplied with the exponential
  3. Check if the sum has a function and its derivative
  4. Verify by differentiation if unsure

⏱️ Time Saved

Traditional IBPMagic Shortcut
3-5 minutes30 seconds

📌 Practice Problems

  1. ex(sinx+cosx)dx\int e^x(\sin x + \cos x)dx Hint: ddx(sinx)=cosx\frac{d}{dx}(\sin x) = \cos x

  2. ex(x1x2)dx\int e^x\left(\frac{x-1}{x^2}\right)dx Hint: Separate and identify f(x)f(x)

  3. (1+xlnx)dx\int (1 + x\ln x)dx Hint: Use Identity 2

  4. etanx(sec2x+sec2xtanx)dx\int e^{\tan x}(\sec^2 x + \sec^2 x \tan x)dx Hint: g(x)=tanxg(x) = \tan x

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs