The Exponential "Magic" Shortcut
🎯 The Strategy
This is the most frequently tested shortcut in JEE Main for indefinite integration. Whenever you see ex combined with a function and its derivative, you can apply these powerful identities directly.
📐 The Core Identities
Identity 1: The Classic ex Formula
∫ex[f(x)+f′(x)]dx=exf(x)+C
This works because:
dxd[exf(x)]=exf(x)+exf′(x)=ex[f(x)+f′(x)]
Identity 2: The xf(x) Extension
∫[f(x)+xf′(x)]dx=xf(x)+C
This is essentially the product rule in reverse:
dxd[xf(x)]=f(x)+xf′(x)
Identity 3: The General Exponential Form
∫eg(x)[f(x)⋅g′(x)+f′(x)]dx=eg(x)f(x)+C
🔍 Pattern Recognition
Look for these telltale signs:
- ex multiplied by a sum of two terms
- One term looks like a function, the other looks like its derivative
- The terms share similar structure (same denominator, related powers)
📝 JEE Main Previous Year Examples
Example 1: JEE Main 2019
Question: If ∫ex(1+cosx1+sinx)dx=ex⋅f(x)+C, find f(x).
Solution:
First, simplify the integrand using half-angle formulas:
1+cosx1+sinx=2cos2(x/2)1+2sin(x/2)cos(x/2)
=2cos2(x/2)1+2cos2(x/2)2sin(x/2)cos(x/2)
=21sec2(x/2)+tan(x/2)
Now the integral becomes:
∫ex[tan(x/2)+21sec2(x/2)]dx
Recognize the pattern!
- Let f(x)=tan(x/2)
- Then f′(x)=21sec2(x/2)
This matches: ∫ex[f(x)+f′(x)]dx=exf(x)+C
Answer: f(x)=tan(x/2)
Example 2: JEE Main 2021
Question: If ∫(e2x+2ex−e−x−1)e(ex+e−x)dx=g(x)e(ex+e−x)+C, where C is a constant of integration, then g(0) is equal to:
Solution:
Let u=ex+e−x, so dxdu=ex−e−x
The integrand can be rewritten:
e2x+2ex−e−x−1=(e2x−1)+(2ex−e−x)
=(ex−e−x)(ex+1)+ex
Hmm, let's try another approach. Factor out strategically:
(e2x+2ex−e−x−1)=(ex−e−x)(ex+1)+ex
Using Identity 3 with g(x)=ex+e−x:
g′(x)=ex−e−x
We need: f(x)⋅g′(x)+f′(x)=e2x+2ex−e−x−1
If f(x)=ex, then:
- f′(x)=ex
- f(x)⋅g′(x)=ex(ex−e−x)=e2x−1
So: f(x)g′(x)+f′(x)=e2x−1+ex
This doesn't match exactly. Let's try f(x)=ex+1:
- f′(x)=ex
- f(x)⋅g′(x)=(ex+1)(ex−e−x)=e2x−1+ex−e−x
So: f(x)g′(x)+f′(x)=e2x+2ex−e−x−1 ✓
Therefore: g(x)=ex+1
Answer: g(0)=e0+1=2
Example 3: JEE Main 2025
Question: The integral ∫(1+x−x1)ex+x1dx is equal to:
Options:
(A) (x+1)ex+x1+C
(B) −xex+x1+C
(C) (x−1)ex+x1+C
(D) xex+x1+C
Solution:
Let g(x)=x+x1
Then g′(x)=1−x21
The integrand is:
(1+x−x1)ex+x1
We need to express this as [f(x)⋅g′(x)+f′(x)]eg(x)
1+x−x1=x(1−x21)+1=x⋅g′(x)+1
If f(x)=x, then f′(x)=1
So: f(x)⋅g′(x)+f′(x)=x(1−x21)+1=x−x1+1 ✓
By Identity 3:
∫(1+x−x1)ex+x1dx=x⋅ex+x1+C
Answer: (D)
Example 4: JEE Main 2018
Question: If ∫x5e−4x3dx=481e−4x3f(x)+C, where C is a constant of integration, then f(x) is equal to:
Options:
(A) −4x3−1
(B) 4x3+1
(C) −2x3−1
(D) −2x3+1
Solution:
Let g(x)=−4x3, so g′(x)=−12x2
Rewrite the integrand:
x5e−4x3=x5⋅eg(x)
We need x5=f(x)⋅g′(x)+f′(x)=−12x2f(x)+f′(x)
Try f(x)=ax3+b (polynomial guess based on structure):
- f′(x)=3ax2
- f(x)⋅g′(x)=−12x2(ax3+b)=−12ax5−12bx2
So: −12ax5−12bx2+3ax2=x5
Comparing coefficients:
- x5: −12a=1⇒a=−121
- x2: −12b+3a=0⇒b=4a=−481
So f(x)=−121x3−481
The integral is:
481e−4x3⋅(−4x3−1)+C
Answer: (A) f(x)=−4x3−1
Example 5: JEE Main 2019
Question: ∫esecx(secxtanxf(x)+secxtanx+sec2x)dx=esecxf(x)+C. Find f(x).
Solution:
Let g(x)=secx, so g′(x)=secxtanx
The integrand is:
esecx[secxtanx⋅f(x)+secxtanx+sec2x]
=eg(x)[g′(x)⋅f(x)+secxtanx+sec2x]
For this to match Identity 3, we need:
f′(x)=secxtanx+sec2x
Integrating:
f(x)=secx+tanx
Verification:
- f(x)=secx+tanx
- f′(x)=secxtanx+sec2x ✓
Answer: f(x)=secx+tanx
🔑 Quick Recognition Guide
| Integrand Pattern | Result |
|---|
| ex[f(x)+f′(x)] | exf(x)+C |
| eax[af(x)+f′(x)] | eaxf(x)+C |
| f(x)+xf′(x) | xf(x)+C |
| eg(x)[f(x)g′(x)+f′(x)] | eg(x)f(x)+C |
💡 How to Spot the Pattern
- Look for e(something) in the integrand
- Identify what's being multiplied with the exponential
- Check if the sum has a function and its derivative
- Verify by differentiation if unsure
⏱️ Time Saved
| Traditional IBP | Magic Shortcut |
|---|
| 3-5 minutes | 30 seconds |
📌 Practice Problems
-
∫ex(sinx+cosx)dx
Hint: dxd(sinx)=cosx
-
∫ex(x2x−1)dx
Hint: Separate and identify f(x)
-
∫(1+xlnx)dx
Hint: Use Identity 2
-
∫etanx(sec2x+sec2xtanx)dx
Hint: g(x)=tanx