Indefinite Integration8 min read

Differentiation in Reverse: The "Options" Trick for JEE Integration

The Core Insight: In the MCQ format of JEE Mains, you have a powerful tool at your disposal: the answer choices themselves. When faced with a complex or time-consuming integration problem, you can often find the correct answer by differentiating the options instead of integrating the given...

integrationdifferentiationreversetechniques

Differentiation in Reverse: The "Options" Trick for JEE Integration

🎯 The Strategic Edge

The Core Insight: In the MCQ format of JEE Mains, you have a powerful tool at your disposal: the answer choices themselves. When faced with a complex or time-consuming integration problem, you can often find the correct answer by differentiating the options instead of integrating the given function.

If ∫f(x) dx=F(x)+C,Β thenΒ ddx[F(x)]=f(x)\text{If } \int f(x)\,dx = F(x) + C, \text{ then } \boxed{\frac{d}{dx}[F(x)] = f(x)}

This reverse approach transforms a challenging integration into a simpler, often mechanical, differentiation problem.


πŸ“ The Method: Step-by-Step

When to Use This Strategy:

βœ… The question asks "find the integral of..." βœ… You have 4-5 distinct function options. βœ… Direct integration looks messy or time-consuming. βœ… You're short on time or unsure of the integration technique.

The 3-Step Process:

  1. Scan the Options: Quickly look at the structure of each option (logarithms, inverse trig, rational functions, etc.).
  2. Differentiate Each Option: Compute ddx[Option]\frac{d}{dx}[\text{Option}].
  3. Match with the Integrand: Compare the derivative to the original f(x)f(x) given in the problem.

⚑ Pro Techniques for Maximum Speed

Technique 1: Smart Elimination via Coefficient Check

You often don't need to differentiate completely. Check:

  • The leading coefficient after differentiation.
  • The degree/power of the resulting expression.

Example: If differentiating an option yields 3x23x^2 but the integrand has 6x26x^2, you know the correct option might have a constant factor of 2.

Technique 2: Strategic Substitution (The "Spot Check")

Pick a simple value of xx (like x=0,1,Ο€/4x = 0, 1, \pi/4) and:

  1. Compute f(x)f(x) at that point.
  2. Differentiate each option at that same xx value.
  3. Eliminate options where Fβ€²(x)β‰ f(x)F'(x) \neq f(x).

This is especially fast for trigonometric integrals.

Technique 3: Structure Recognition

Match the derivative's structure to the integrand's structure:

If the integrand contains...Look for options containing...After differentiation, you'll get...
1a2βˆ’x2\frac{1}{\sqrt{a^2 - x^2}}sinβ‘βˆ’1(x/a)\sin^{-1}(x/a) or cosβ‘βˆ’1(x/a)\cos^{-1}(x/a)1a2βˆ’x2\frac{1}{\sqrt{a^2 - x^2}}
1a2+x2\frac{1}{a^2 + x^2}1atanβ‘βˆ’1(x/a)\frac{1}{a}\tan^{-1}(x/a)1a2+x2\frac{1}{a^2 + x^2}
fβ€²(x)f(x)\frac{f'(x)}{f(x)}$ \lnf(x)
ex[g(x)+gβ€²(x)]e^x[g(x) + g'(x)]exg(x)e^x g(x)ex[g(x)+gβ€²(x)]e^x[g(x) + g'(x)]

πŸ“ Applied Mastery: JEE Problems Decoded

Problem Type 1: The Standard Verification

Question (JEE Main 2019): If ∫(x2+1)ex(x+1)2dx=f(x)ex+C\int \frac{(x^2 + 1)e^x}{(x+1)^2}dx = f(x)e^x + C, find d3fdx3\frac{d^3f}{dx^3} at x=1x = 1.

Options: (A) βˆ’34-\frac{3}{4} (B) 34\frac{3}{4} (C) 12\frac{1}{2} (D) βˆ’12-\frac{1}{2}

Solution using Options Trick: We need to find f(x)f(x) first. The problem says the integral equals f(x)ex+Cf(x)e^x + C. So if we differentiate that, we should get the integrand back: ddx[f(x)ex]=ex[f(x)+fβ€²(x)]=(x2+1)ex(x+1)2\frac{d}{dx}[f(x)e^x] = e^x[f(x) + f'(x)] = \frac{(x^2+1)e^x}{(x+1)^2} Thus, f(x)+fβ€²(x)=x2+1(x+1)2f(x) + f'(x) = \frac{x^2+1}{(x+1)^2}.

Instead of solving this differential equation, let's test intelligent guesses for f(x)f(x) based on the options for fβ€²β€²β€²(1)f'''(1).

We can try a simple rational function: f(x)=Ax+Bx+1f(x) = \frac{Ax+B}{x+1}. Differentiate: fβ€²(x)=A(x+1)βˆ’(Ax+B)(x+1)2=Aβˆ’B(x+1)2f'(x) = \frac{A(x+1) - (Ax+B)}{(x+1)^2} = \frac{A - B}{(x+1)^2}.

Then: f(x)+fβ€²(x)=Ax+Bx+1+Aβˆ’B(x+1)2=(Ax+B)(x+1)+(Aβˆ’B)(x+1)2=Ax2+(A+B)x+B+Aβˆ’B(x+1)2=Ax2+(A+B)x+A(x+1)2f(x) + f'(x) = \frac{Ax+B}{x+1} + \frac{A-B}{(x+1)^2} = \frac{(Ax+B)(x+1) + (A-B)}{(x+1)^2} = \frac{Ax^2 + (A+B)x + B + A - B}{(x+1)^2} = \frac{Ax^2 + (A+B)x + A}{(x+1)^2} We need this to equal x2+1(x+1)2\frac{x^2+1}{(x+1)^2}. So:

  • Coefficient of x2x^2: A=1A = 1
  • Coefficient of xx: A+B=0β‡’B=βˆ’1A+B = 0 \Rightarrow B = -1
  • Constant term: A=1A = 1 βœ“

Thus f(x)=xβˆ’1x+1f(x) = \frac{x-1}{x+1}. Now compute derivatives: fβ€²(x)=2(x+1)2,fβ€²β€²(x)=βˆ’4(x+1)3,fβ€²β€²β€²(x)=12(x+1)4f'(x) = \frac{2}{(x+1)^2},\quad f''(x) = \frac{-4}{(x+1)^3},\quad f'''(x) = \frac{12}{(x+1)^4} At x=1x=1: fβ€²β€²β€²(1)=1216=34f'''(1) = \frac{12}{16} = \frac{3}{4}.

Answer: (B) 34\frac{3}{4}.

Time saved: Instead of integrating a tricky rational-exponential function, we solved a simple differential equation by intelligent guessing.


Problem Type 2: Trigonometric Integral with Inverse Trig Answer

Question (JEE Main 2020): If ∫cos⁑xβˆ’sin⁑x8βˆ’sin⁑2xdx=asinβ‘βˆ’1(sin⁑x+cos⁑xb)+c\int \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}}dx = a\sin^{-1}\left(\frac{\sin x + \cos x}{b}\right) + c, find (a,b)(a, b).

Options: (A) (1,3)(1, 3) (B) (βˆ’1,3)(-1, 3) (C) (1,βˆ’3)(1, -3) (D) (βˆ’1,βˆ’3)(-1, -3)

Solution using Differentiation Check: Let's test option (A): F(x)=sinβ‘βˆ’1(sin⁑x+cos⁑x3)F(x) = \sin^{-1}\left(\frac{\sin x + \cos x}{3}\right).

Differentiate using chain rule: dFdx=11βˆ’(sin⁑x+cos⁑x3)2β‹…ddx(sin⁑x+cos⁑x3)\frac{dF}{dx} = \frac{1}{\sqrt{1 - \left(\frac{\sin x+\cos x}{3}\right)^2}} \cdot \frac{d}{dx}\left(\frac{\sin x+\cos x}{3}\right) =11βˆ’(sin⁑x+cos⁑x)29β‹…cos⁑xβˆ’sin⁑x3= \frac{1}{\sqrt{1 - \frac{(\sin x+\cos x)^2}{9}}} \cdot \frac{\cos x - \sin x}{3} Simplify the square root: 1βˆ’(sin⁑x+cos⁑x)29=9βˆ’(1+sin⁑2x)9=8βˆ’sin⁑2x9=8βˆ’sin⁑2x3\sqrt{1 - \frac{(\sin x+\cos x)^2}{9}} = \sqrt{\frac{9 - (1 + \sin 2x)}{9}} = \sqrt{\frac{8 - \sin 2x}{9}} = \frac{\sqrt{8 - \sin 2x}}{3} Therefore: dFdx=1(8βˆ’sin⁑2x)/3β‹…cos⁑xβˆ’sin⁑x3=cos⁑xβˆ’sin⁑x8βˆ’sin⁑2x\frac{dF}{dx} = \frac{1}{(\sqrt{8 - \sin 2x})/3} \cdot \frac{\cos x - \sin x}{3} = \frac{\cos x - \sin x}{\sqrt{8 - \sin 2x}} This matches the integrand exactly! So option (A) is correct.

Answer: (A) (1,3)(1, 3).

Time saved: No need for trigonometric substitution or clever algebraic manipulation of the integrand.


Problem Type 3: Rational Function Integration

Question (JEE Main 2018): The integral ∫2x3βˆ’1x4+xdx\int \frac{2x^3 - 1}{x^4 + x}dx equals:

Options:
(A) 12ln⁑∣x3+1x2∣+C\frac{1}{2}\ln\left|\frac{x^3 + 1}{x^2}\right| + C
(B) ln⁑∣x3+1x∣+C\ln\left|\frac{x^3 + 1}{x}\right| + C
(C) 12ln⁑∣x3+1x∣+C\frac{1}{2}\ln\left|\frac{x^3 + 1}{x}\right| + C
(D) ln⁑∣x3+1x2∣+C\ln\left|\frac{x^3 + 1}{x^2}\right| + C

Solution using Spot Check & Differentiation: Let's use x=1x = 1 as a test point.

  1. Integrand at x=1x=1: 2(1)3βˆ’114+1=12\frac{2(1)^3 - 1}{1^4 + 1} = \frac{1}{2}.
  2. Derivative of each option at x=1x=1:

For option (A): F(x)=12ln⁑∣x3+1x2∣F(x) = \frac{1}{2}\ln\left|\frac{x^3+1}{x^2}\right| Fβ€²(x)=12β‹…x2x3+1β‹…3x2β‹…x2βˆ’(x3+1)β‹…2xx4=12β‹…3x4βˆ’2x(x3+1)x2(x3+1)F'(x) = \frac{1}{2} \cdot \frac{x^2}{x^3+1} \cdot \frac{3x^2 \cdot x^2 - (x^3+1)\cdot 2x}{x^4} = \frac{1}{2} \cdot \frac{3x^4 - 2x(x^3+1)}{x^2(x^3+1)} At x=1x=1: Fβ€²(1)=12β‹…3βˆ’2(1+1)1β‹…(1+1)=12β‹…3βˆ’42=12β‹…βˆ’12=βˆ’14β‰ 12F'(1) = \frac{1}{2} \cdot \frac{3 - 2(1+1)}{1 \cdot (1+1)} = \frac{1}{2} \cdot \frac{3-4}{2} = \frac{1}{2} \cdot \frac{-1}{2} = -\frac{1}{4} \neq \frac{1}{2} βœ—

For option (C): F(x)=12ln⁑∣x3+1x∣F(x) = \frac{1}{2}\ln\left|\frac{x^3+1}{x}\right| Fβ€²(x)=12β‹…xx3+1β‹…3x2β‹…xβˆ’(x3+1)β‹…1x2=12β‹…3x3βˆ’(x3+1)x(x3+1)F'(x) = \frac{1}{2} \cdot \frac{x}{x^3+1} \cdot \frac{3x^2 \cdot x - (x^3+1)\cdot 1}{x^2} = \frac{1}{2} \cdot \frac{3x^3 - (x^3+1)}{x(x^3+1)} At x=1x=1: Fβ€²(1)=12β‹…3βˆ’(1+1)1β‹…(1+1)=12β‹…12=14β‰ 12F'(1) = \frac{1}{2} \cdot \frac{3 - (1+1)}{1\cdot(1+1)} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \neq \frac{1}{2} βœ—

Wait, we made an arithmetic error. Let's recompute carefully for option (C): F(x)=12ln⁑∣x3+1x∣=12[ln⁑∣x3+1βˆ£βˆ’ln⁑∣x∣]F(x) = \frac{1}{2}\ln\left|\frac{x^3+1}{x}\right| = \frac{1}{2}[\ln|x^3+1| - \ln|x|] Fβ€²(x)=12[3x2x3+1βˆ’1x]F'(x) = \frac{1}{2}\left[\frac{3x^2}{x^3+1} - \frac{1}{x}\right] At x=1x=1: Fβ€²(1)=12[32βˆ’1]=12β‹…12=14F'(1) = \frac{1}{2}\left[\frac{3}{2} - 1\right] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. Still not 12\frac{1}{2}.

Let's check option (B): F(x)=ln⁑∣x3+1x∣=ln⁑∣x3+1βˆ£βˆ’ln⁑∣x∣F(x) = \ln\left|\frac{x^3+1}{x}\right| = \ln|x^3+1| - \ln|x| Fβ€²(x)=3x2x3+1βˆ’1xF'(x) = \frac{3x^2}{x^3+1} - \frac{1}{x} At x=1x=1: Fβ€²(1)=32βˆ’1=12F'(1) = \frac{3}{2} - 1 = \frac{1}{2} βœ“

Therefore, option (B) is correct.

Answer: (B) ln⁑∣x3+1x∣+C\ln\left|\frac{x^3 + 1}{x}\right| + C.


πŸ”‘ Decision Framework: When to Integrate vs. When to Differentiate


⏱️ Time Analysis & Strategic Advantage

MethodTime RequiredRisk of ErrorMental Effort
Direct Integration3-6 minutesHigh (algebraic slips)High
Differentiation Trick1-2 minutesLowMedium
Spot Check + Differentiation30-90 secondsVery LowLow

Best Case Scenario: The correct option is the first one you differentiate, or a spot check eliminates 3 options immediately.


πŸ“Œ Practice for Speed (Try in 2 minutes each)

  1. JEE Main 2021: ∫x3βˆ’xx4+9dx=12ln⁑(x4+9)βˆ’16tanβ‘βˆ’1(x23)+C\int \frac{x^3 - x}{x^4 + 9}dx = \frac{1}{2}\ln(x^4+9) - \frac{1}{6}\tan^{-1}\left(\frac{x^2}{3}\right) + C. Verify by differentiating the right side.
  2. JEE Main 2019: ∫ex(1βˆ’sin⁑x1βˆ’cos⁑x)dx=βˆ’excot⁑(x/2)+C\int e^x\left(\frac{1 - \sin x}{1 - \cos x}\right)dx = -e^x \cot(x/2) + C. Check using differentiation.
  3. Challenge: For ∫dxx+x4\int \frac{dx}{\sqrt{x} + \sqrt[4]{x}}, one option is 43x3/4βˆ’2x1/2+4x1/4βˆ’4ln⁑(1+x1/4)+C\frac{4}{3}x^{3/4} - 2x^{1/2} + 4x^{1/4} - 4\ln(1+x^{1/4}) + C. Quickly verify the leading term's coefficient by differentiation.

Final Takeaways for Exam Day

  1. First Reaction: See integration problem β†’ immediately glance at options.
  2. Quick Filter: If options contain distinct function types (log vs. inverse trig vs. polynomial), differentiation trick will be efficient.
  3. Spot Check First: Before full differentiation, try x=0x = 0 or x=1x = 1. Often eliminates 2-3 options instantly.
  4. Differentiate Systematically: Use standard derivative rules; don't rush the algebra.
  5. Trust the Method: If differentiation yields the integrand (up to a constant factor you can adjust), you've found the answer.

This technique exemplifies the JEE mindset: work smarter, not just harder. It leverages the MCQ format to your advantage, turning a potential time-sink into a quick victory.


"In the JEE, sometimes the fastest way forward is to go backwards."

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs