Integration by Parts: The "DI" Method (Tabular Integration)
🎯 The Strategy
When you need to apply Integration by Parts (IBP) multiple times , the standard u ⋅ v u \cdot v u ⋅ v formula becomes tedious and error-prone. The DI Method (also called Tabular Integration) provides a systematic, fast approach.
📐 The Standard IBP Formula
∫ u ⋅ v d x = u ∫ v d x − ∫ ( d u d x ⋅ ∫ v d x ) d x \int u \cdot v \, dx = u \int v \, dx - \int \left( \frac{du}{dx} \cdot \int v \, dx \right) dx ∫ u ⋅ v d x = u ∫ v d x − ∫ ( d x d u ⋅ ∫ v d x ) d x
Or in the LIATE form:
∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫ u d v = uv − ∫ v d u
🔄 The DI Method Setup
Create a table with three columns:
Sign D (Differentiate) I (Integrate) + u u u v v v - u ′ u' u ′ ∫ v \int v ∫ v + u ′ ′ u'' u ′′ ∫ ∫ v \int\int v ∫∫ v - u ′ ′ ′ u''' u ′′′ ∫ ∫ ∫ v \int\int\int v ∫∫∫ v ... ... ...
Rules:
D column : Keep differentiating until you get 0
I column : Keep integrating
Sign column : Alternates starting with +
Multiply diagonally and add all terms
📝 JEE Main Previous Year Examples
Example 1: JEE Main 2025
Question: Let ∫ x 3 sin x d x = g ( x ) + C \int x^3 \sin x \, dx = g(x) + C ∫ x 3 sin x d x = g ( x ) + C , where C C C is the constant of integration. If 8 ( g ( π 2 ) + g ′ ( π 2 ) ) = α π 3 + β π 2 + γ 8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha\pi^3 + \beta\pi^2 + \gamma 8 ( g ( 2 π ) + g ′ ( 2 π ) ) = α π 3 + β π 2 + γ , where α , β , γ ∈ Z \alpha, \beta, \gamma \in \mathbb{Z} α , β , γ ∈ Z , then α + β − γ \alpha + \beta - \gamma α + β − γ equals:
Solution using DI Method:
Sign D (Differentiate) I (Integrate) + x 3 x^3 x 3 sin x \sin x sin x - 3 x 2 3x^2 3 x 2 − cos x -\cos x − cos x + 6 x 6x 6 x − sin x -\sin x − sin x - 6 6 6 cos x \cos x cos x + 0 0 0 sin x \sin x sin x
Result: Multiply diagonally and add:
g ( x ) = x 3 ( − cos x ) − 3 x 2 ( − sin x ) + 6 x ( cos x ) − 6 ( sin x ) + C g(x) = x^3(-\cos x) - 3x^2(-\sin x) + 6x(\cos x) - 6(\sin x) + C g ( x ) = x 3 ( − cos x ) − 3 x 2 ( − sin x ) + 6 x ( cos x ) − 6 ( sin x ) + C
= − x 3 cos x + 3 x 2 sin x + 6 x cos x − 6 sin x + C = -x^3\cos x + 3x^2\sin x + 6x\cos x - 6\sin x + C = − x 3 cos x + 3 x 2 sin x + 6 x cos x − 6 sin x + C
Now calculate:
g ( π 2 ) = − π 3 8 ( 0 ) + 3 ⋅ π 2 4 ( 1 ) + 6 ⋅ π 2 ( 0 ) − 6 ( 1 ) = 3 π 2 4 − 6 g\left(\frac{\pi}{2}\right) = -\frac{\pi^3}{8}(0) + 3\cdot\frac{\pi^2}{4}(1) + 6\cdot\frac{\pi}{2}(0) - 6(1) = \frac{3\pi^2}{4} - 6 g ( 2 π ) = − 8 π 3 ( 0 ) + 3 ⋅ 4 π 2 ( 1 ) + 6 ⋅ 2 π ( 0 ) − 6 ( 1 ) = 4 3 π 2 − 6
g ′ ( x ) = − 3 x 2 cos x + x 3 sin x + 6 x sin x + 3 x 2 cos x + 6 cos x − 6 x sin x − 6 cos x g'(x) = -3x^2\cos x + x^3\sin x + 6x\sin x + 3x^2\cos x + 6\cos x - 6x\sin x - 6\cos x g ′ ( x ) = − 3 x 2 cos x + x 3 sin x + 6 x sin x + 3 x 2 cos x + 6 cos x − 6 x sin x − 6 cos x
= x 3 sin x = x^3\sin x = x 3 sin x (after simplification)
g ′ ( π 2 ) = π 3 8 ( 1 ) = π 3 8 g'\left(\frac{\pi}{2}\right) = \frac{\pi^3}{8}(1) = \frac{\pi^3}{8} g ′ ( 2 π ) = 8 π 3 ( 1 ) = 8 π 3
So: 8 ( g ( π 2 ) + g ′ ( π 2 ) ) = 8 ( 3 π 2 4 − 6 + π 3 8 ) 8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = 8\left(\frac{3\pi^2}{4} - 6 + \frac{\pi^3}{8}\right) 8 ( g ( 2 π ) + g ′ ( 2 π ) ) = 8 ( 4 3 π 2 − 6 + 8 π 3 )
= 6 π 2 − 48 + π 3 = π 3 + 6 π 2 − 48 = 6\pi^2 - 48 + \pi^3 = \pi^3 + 6\pi^2 - 48 = 6 π 2 − 48 + π 3 = π 3 + 6 π 2 − 48
Therefore: α = 1 \alpha = 1 α = 1 , β = 6 \beta = 6 β = 6 , γ = − 48 \gamma = -48 γ = − 48
Answer: α + β − γ = 1 + 6 − ( − 48 ) = 55 \alpha + \beta - \gamma = 1 + 6 - (-48) = 55 α + β − γ = 1 + 6 − ( − 48 ) = 55
Example 2: JEE Main 2020
Question: Evaluate ∫ x 2 sin 2 x d x \int x^2 \sin 2x \, dx ∫ x 2 sin 2 x d x
Solution using DI Method:
Sign D (Differentiate) I (Integrate) + x 2 x^2 x 2 sin 2 x \sin 2x sin 2 x - 2 x 2x 2 x − 1 2 cos 2 x -\frac{1}{2}\cos 2x − 2 1 cos 2 x + 2 2 2 − 1 4 sin 2 x -\frac{1}{4}\sin 2x − 4 1 sin 2 x - 0 0 0 1 8 cos 2 x \frac{1}{8}\cos 2x 8 1 cos 2 x
Result:
∫ x 2 sin 2 x d x = x 2 ( − 1 2 cos 2 x ) − 2 x ( − 1 4 sin 2 x ) + 2 ( 1 8 cos 2 x ) + C \int x^2 \sin 2x \, dx = x^2\left(-\frac{1}{2}\cos 2x\right) - 2x\left(-\frac{1}{4}\sin 2x\right) + 2\left(\frac{1}{8}\cos 2x\right) + C ∫ x 2 sin 2 x d x = x 2 ( − 2 1 cos 2 x ) − 2 x ( − 4 1 sin 2 x ) + 2 ( 8 1 cos 2 x ) + C
= − x 2 2 cos 2 x + x 2 sin 2 x + 1 4 cos 2 x + C = -\frac{x^2}{2}\cos 2x + \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C = − 2 x 2 cos 2 x + 2 x sin 2 x + 4 1 cos 2 x + C
Example 3: JEE Main 2018
Question: ∫ x sin 2 x d x = ? \int x \sin^2 x \, dx = ? ∫ x sin 2 x d x = ?
Solution:
First, use identity: sin 2 x = 1 − cos 2 x 2 \sin^2 x = \frac{1 - \cos 2x}{2} sin 2 x = 2 1 − c o s 2 x
∫ x sin 2 x d x = ∫ x ⋅ 1 − cos 2 x 2 d x = 1 2 ∫ x d x − 1 2 ∫ x cos 2 x d x \int x \sin^2 x \, dx = \int x \cdot \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2}\int x \, dx - \frac{1}{2}\int x \cos 2x \, dx ∫ x sin 2 x d x = ∫ x ⋅ 2 1 − c o s 2 x d x = 2 1 ∫ x d x − 2 1 ∫ x cos 2 x d x
For the second integral, use DI Method:
Sign D I + x x x cos 2 x \cos 2x cos 2 x - 1 1 1 1 2 sin 2 x \frac{1}{2}\sin 2x 2 1 sin 2 x + 0 0 0 − 1 4 cos 2 x -\frac{1}{4}\cos 2x − 4 1 cos 2 x
∫ x cos 2 x d x = x 2 sin 2 x + 1 4 cos 2 x + C \int x \cos 2x \, dx = \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C ∫ x cos 2 x d x = 2 x sin 2 x + 4 1 cos 2 x + C
Final Answer:
∫ x sin 2 x d x = x 2 4 − 1 2 ( x 2 sin 2 x + 1 4 cos 2 x ) + C \int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{1}{2}\left(\frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x\right) + C ∫ x sin 2 x d x = 4 x 2 − 2 1 ( 2 x sin 2 x + 4 1 cos 2 x ) + C
= x 2 4 − x 4 sin 2 x − 1 8 cos 2 x + C = \frac{x^2}{4} - \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C = 4 x 2 − 4 x sin 2 x − 8 1 cos 2 x + C
Example 4: JEE Main 2019
Question: ∫ ( log x ) 2 d x = ? \int (\log x)^2 \, dx = ? ∫ ( log x ) 2 d x = ?
Solution using DI Method:
Here u = ( log x ) 2 u = (\log x)^2 u = ( log x ) 2 and v = 1 v = 1 v = 1
Sign D (Differentiate) I (Integrate) + ( log x ) 2 (\log x)^2 ( log x ) 2 1 1 1 - 2 log x x \frac{2\log x}{x} x 2 l o g x x x x + 2 − 2 log x x 2 \frac{2 - 2\log x}{x^2} x 2 2 − 2 l o g x ...
This doesn't terminate nicely with the table. Better to use standard IBP:
∫ ( log x ) 2 d x = x ( log x ) 2 − ∫ x ⋅ 2 log x x d x \int (\log x)^2 dx = x(\log x)^2 - \int x \cdot \frac{2\log x}{x} dx ∫ ( log x ) 2 d x = x ( log x ) 2 − ∫ x ⋅ x 2 l o g x d x
= x ( log x ) 2 − 2 ∫ log x d x = x(\log x)^2 - 2\int \log x \, dx = x ( log x ) 2 − 2 ∫ log x d x
For ∫ log x d x \int \log x \, dx ∫ log x d x , use DI:
Sign D I + log x \log x log x 1 1 1 - 1 x \frac{1}{x} x 1 x x x + − 1 x 2 -\frac{1}{x^2} − x 2 1 ...
∫ log x d x = x log x − ∫ x ⋅ 1 x d x = x log x − x + C \int \log x \, dx = x\log x - \int x \cdot \frac{1}{x} dx = x\log x - x + C ∫ log x d x = x log x − ∫ x ⋅ x 1 d x = x log x − x + C
Final Answer:
∫ ( log x ) 2 d x = x ( log x ) 2 − 2 ( x log x − x ) + C \int (\log x)^2 dx = x(\log x)^2 - 2(x\log x - x) + C ∫ ( log x ) 2 d x = x ( log x ) 2 − 2 ( x log x − x ) + C
= x ( log x ) 2 − 2 x log x + 2 x + C = x(\log x)^2 - 2x\log x + 2x + C = x ( log x ) 2 − 2 x log x + 2 x + C
= x [ ( log x ) 2 − 2 log x + 2 ] + C = x[(\log x)^2 - 2\log x + 2] + C = x [( log x ) 2 − 2 log x + 2 ] + C
Example 5: JEE Main 2017
Question: ∫ e x sin x d x \int e^x \sin x \, dx ∫ e x sin x d x
Solution:
This is a cyclic case - differentiation doesn't terminate!
Sign D I + e x e^x e x sin x \sin x sin x - e x e^x e x − cos x -\cos x − cos x + e x e^x e x − sin x -\sin x − sin x
Let I = ∫ e x sin x d x I = \int e^x \sin x \, dx I = ∫ e x sin x d x
From the table:
I = e x ( − cos x ) − e x ( − sin x ) + ∫ e x ( − sin x ) d x I = e^x(-\cos x) - e^x(-\sin x) + \int e^x(-\sin x) dx I = e x ( − cos x ) − e x ( − sin x ) + ∫ e x ( − sin x ) d x
I = − e x cos x + e x sin x − I I = -e^x\cos x + e^x\sin x - I I = − e x cos x + e x sin x − I
2 I = e x ( sin x − cos x ) 2I = e^x(\sin x - \cos x) 2 I = e x ( sin x − cos x )
I = e x ( sin x − cos x ) 2 + C I = \frac{e^x(\sin x - \cos x)}{2} + C I = 2 e x ( s i n x − c o s x ) + C
Alternative form: I = e x 2 sin ( x − π 4 ) + C I = \frac{e^x}{\sqrt{2}}\sin\left(x - \frac{\pi}{4}\right) + C I = 2 e x sin ( x − 4 π ) + C
🔑 LIATE Rule for Choosing u
When deciding which function to differentiate (D) and which to integrate (I), use LIATE :
Priority Type Examples 1 L ogarithmicln x \ln x ln x , log x \log x log x 2 I nverse Trigsin − 1 x \sin^{-1}x sin − 1 x , tan − 1 x \tan^{-1}x tan − 1 x 3 A lgebraicx n x^n x n , polynomials4 T rigonometricsin x \sin x sin x , cos x \cos x cos x 5 E xponentiale x e^x e x , a x a^x a x
Choose the function higher in the list as 'u' (to differentiate).
⚠️ Special Cases
1. Cyclic Integrals
When the original integral reappears:
∫ e x sin x d x , ∫ e x cos x d x \int e^x \sin x \, dx, \quad \int e^x \cos x \, dx ∫ e x sin x d x , ∫ e x cos x d x
Strategy: Let I I I = integral, solve the equation for I I I
2. Reduction Formulas
For ∫ sin n x d x \int \sin^n x \, dx ∫ sin n x d x or ∫ x n e x d x \int x^n e^x \, dx ∫ x n e x d x , the table helps derive reduction formulas.
⏱️ Time Comparison
Problem Standard IBP DI Method ∫ x 3 sin x d x \int x^3 \sin x \, dx ∫ x 3 sin x d x 5-6 min 2 min ∫ x 2 e x d x \int x^2 e^x \, dx ∫ x 2 e x d x 3-4 min 1 min ∫ x 4 cos x d x \int x^4 \cos x \, dx ∫ x 4 cos x d x 7-8 min 2-3 min
📌 Practice Problems
∫ x 4 e x d x \int x^4 e^x \, dx ∫ x 4 e x d x
∫ x 2 cos 3 x d x \int x^2 \cos 3x \, dx ∫ x 2 cos 3 x d x
∫ x 3 ln x d x \int x^3 \ln x \, dx ∫ x 3 ln x d x
∫ e 2 x cos 3 x d x \int e^{2x} \cos 3x \, dx ∫ e 2 x cos 3 x d x (Cyclic case)
∫ x 2 tan − 1 x d x \int x^2 \tan^{-1} x \, dx ∫ x 2 tan − 1 x d x
💡 Pro Tips
Always differentiate the polynomial (it eventually becomes 0)
For log functions , put them in the D column (LIATE rule)
For cyclic integrals , stop after two rows and solve algebraically
Check signs carefully - alternating +, -, +, -, ...
Verify by differentiation if time permits