Indefinite Integration7 min read

Integration by Parts: The "DI" Method (Tabular Integration)

When you need to apply Integration by Parts (IBP) multiple times, the standard $u \cdot v$ formula becomes tedious and error-prone. The DI Method (also called Tabular Integration) provides a systematic, fast approach.

integrationby-partsilatetechniques

Integration by Parts: The "DI" Method (Tabular Integration)

🎯 The Strategy

When you need to apply Integration by Parts (IBP) multiple times, the standard uvu \cdot v formula becomes tedious and error-prone. The DI Method (also called Tabular Integration) provides a systematic, fast approach.


📐 The Standard IBP Formula

uvdx=uvdx(dudxvdx)dx\int u \cdot v \, dx = u \int v \, dx - \int \left( \frac{du}{dx} \cdot \int v \, dx \right) dx

Or in the LIATE form: udv=uvvdu\int u \, dv = uv - \int v \, du


🔄 The DI Method Setup

Create a table with three columns:

SignD (Differentiate)I (Integrate)
+uuvv
-uu'v\int v
+uu''v\int\int v
-uu'''v\int\int\int v
.........

Rules:

  1. D column: Keep differentiating until you get 0
  2. I column: Keep integrating
  3. Sign column: Alternates starting with +
  4. Multiply diagonally and add all terms

📝 JEE Main Previous Year Examples

Example 1: JEE Main 2025

Question: Let x3sinxdx=g(x)+C\int x^3 \sin x \, dx = g(x) + C, where CC is the constant of integration. If 8(g(π2)+g(π2))=απ3+βπ2+γ8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha\pi^3 + \beta\pi^2 + \gamma, where α,β,γZ\alpha, \beta, \gamma \in \mathbb{Z}, then α+βγ\alpha + \beta - \gamma equals:

Solution using DI Method:

SignD (Differentiate)I (Integrate)
+x3x^3sinx\sin x
-3x23x^2cosx-\cos x
+6x6xsinx-\sin x
-66cosx\cos x
+00sinx\sin x

Result: Multiply diagonally and add: g(x)=x3(cosx)3x2(sinx)+6x(cosx)6(sinx)+Cg(x) = x^3(-\cos x) - 3x^2(-\sin x) + 6x(\cos x) - 6(\sin x) + C =x3cosx+3x2sinx+6xcosx6sinx+C= -x^3\cos x + 3x^2\sin x + 6x\cos x - 6\sin x + C

Now calculate:

  • g(π2)=π38(0)+3π24(1)+6π2(0)6(1)=3π246g\left(\frac{\pi}{2}\right) = -\frac{\pi^3}{8}(0) + 3\cdot\frac{\pi^2}{4}(1) + 6\cdot\frac{\pi}{2}(0) - 6(1) = \frac{3\pi^2}{4} - 6

  • g(x)=3x2cosx+x3sinx+6xsinx+3x2cosx+6cosx6xsinx6cosxg'(x) = -3x^2\cos x + x^3\sin x + 6x\sin x + 3x^2\cos x + 6\cos x - 6x\sin x - 6\cos x =x3sinx= x^3\sin x (after simplification)

  • g(π2)=π38(1)=π38g'\left(\frac{\pi}{2}\right) = \frac{\pi^3}{8}(1) = \frac{\pi^3}{8}

So: 8(g(π2)+g(π2))=8(3π246+π38)8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = 8\left(\frac{3\pi^2}{4} - 6 + \frac{\pi^3}{8}\right) =6π248+π3=π3+6π248= 6\pi^2 - 48 + \pi^3 = \pi^3 + 6\pi^2 - 48

Therefore: α=1\alpha = 1, β=6\beta = 6, γ=48\gamma = -48

Answer: α+βγ=1+6(48)=55\alpha + \beta - \gamma = 1 + 6 - (-48) = 55


Example 2: JEE Main 2020

Question: Evaluate x2sin2xdx\int x^2 \sin 2x \, dx

Solution using DI Method:

SignD (Differentiate)I (Integrate)
+x2x^2sin2x\sin 2x
-2x2x12cos2x-\frac{1}{2}\cos 2x
+2214sin2x-\frac{1}{4}\sin 2x
-0018cos2x\frac{1}{8}\cos 2x

Result: x2sin2xdx=x2(12cos2x)2x(14sin2x)+2(18cos2x)+C\int x^2 \sin 2x \, dx = x^2\left(-\frac{1}{2}\cos 2x\right) - 2x\left(-\frac{1}{4}\sin 2x\right) + 2\left(\frac{1}{8}\cos 2x\right) + C

=x22cos2x+x2sin2x+14cos2x+C= -\frac{x^2}{2}\cos 2x + \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C


Example 3: JEE Main 2018

Question: xsin2xdx=?\int x \sin^2 x \, dx = ?

Solution:

First, use identity: sin2x=1cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}

xsin2xdx=x1cos2x2dx=12xdx12xcos2xdx\int x \sin^2 x \, dx = \int x \cdot \frac{1 - \cos 2x}{2} \, dx = \frac{1}{2}\int x \, dx - \frac{1}{2}\int x \cos 2x \, dx

For the second integral, use DI Method:

SignDI
+xxcos2x\cos 2x
-1112sin2x\frac{1}{2}\sin 2x
+0014cos2x-\frac{1}{4}\cos 2x

xcos2xdx=x2sin2x+14cos2x+C\int x \cos 2x \, dx = \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C

Final Answer: xsin2xdx=x2412(x2sin2x+14cos2x)+C\int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{1}{2}\left(\frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x\right) + C =x24x4sin2x18cos2x+C= \frac{x^2}{4} - \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C


Example 4: JEE Main 2019

Question: (logx)2dx=?\int (\log x)^2 \, dx = ?

Solution using DI Method:

Here u=(logx)2u = (\log x)^2 and v=1v = 1

SignD (Differentiate)I (Integrate)
+(logx)2(\log x)^211
-2logxx\frac{2\log x}{x}xx
+22logxx2\frac{2 - 2\log x}{x^2}...

This doesn't terminate nicely with the table. Better to use standard IBP:

(logx)2dx=x(logx)2x2logxxdx\int (\log x)^2 dx = x(\log x)^2 - \int x \cdot \frac{2\log x}{x} dx =x(logx)22logxdx= x(\log x)^2 - 2\int \log x \, dx

For logxdx\int \log x \, dx, use DI:

SignDI
+logx\log x11
-1x\frac{1}{x}xx
+1x2-\frac{1}{x^2}...

logxdx=xlogxx1xdx=xlogxx+C\int \log x \, dx = x\log x - \int x \cdot \frac{1}{x} dx = x\log x - x + C

Final Answer: (logx)2dx=x(logx)22(xlogxx)+C\int (\log x)^2 dx = x(\log x)^2 - 2(x\log x - x) + C =x(logx)22xlogx+2x+C= x(\log x)^2 - 2x\log x + 2x + C =x[(logx)22logx+2]+C= x[(\log x)^2 - 2\log x + 2] + C


Example 5: JEE Main 2017

Question: exsinxdx\int e^x \sin x \, dx

Solution:

This is a cyclic case - differentiation doesn't terminate!

SignDI
+exe^xsinx\sin x
-exe^xcosx-\cos x
+exe^xsinx-\sin x

Let I=exsinxdxI = \int e^x \sin x \, dx

From the table: I=ex(cosx)ex(sinx)+ex(sinx)dxI = e^x(-\cos x) - e^x(-\sin x) + \int e^x(-\sin x) dx I=excosx+exsinxII = -e^x\cos x + e^x\sin x - I 2I=ex(sinxcosx)2I = e^x(\sin x - \cos x) I=ex(sinxcosx)2+CI = \frac{e^x(\sin x - \cos x)}{2} + C

Alternative form: I=ex2sin(xπ4)+CI = \frac{e^x}{\sqrt{2}}\sin\left(x - \frac{\pi}{4}\right) + C


🔑 LIATE Rule for Choosing u

When deciding which function to differentiate (D) and which to integrate (I), use LIATE:

PriorityTypeExamples
1Logarithmiclnx\ln x, logx\log x
2Inverse Trigsin1x\sin^{-1}x, tan1x\tan^{-1}x
3Algebraicxnx^n, polynomials
4Trigonometricsinx\sin x, cosx\cos x
5Exponentialexe^x, axa^x

Choose the function higher in the list as 'u' (to differentiate).


⚠️ Special Cases

1. Cyclic Integrals

When the original integral reappears: exsinxdx,excosxdx\int e^x \sin x \, dx, \quad \int e^x \cos x \, dx

Strategy: Let II = integral, solve the equation for II

2. Reduction Formulas

For sinnxdx\int \sin^n x \, dx or xnexdx\int x^n e^x \, dx, the table helps derive reduction formulas.


⏱️ Time Comparison

ProblemStandard IBPDI Method
x3sinxdx\int x^3 \sin x \, dx5-6 min2 min
x2exdx\int x^2 e^x \, dx3-4 min1 min
x4cosxdx\int x^4 \cos x \, dx7-8 min2-3 min

📌 Practice Problems

  1. x4exdx\int x^4 e^x \, dx

  2. x2cos3xdx\int x^2 \cos 3x \, dx

  3. x3lnxdx\int x^3 \ln x \, dx

  4. e2xcos3xdx\int e^{2x} \cos 3x \, dx (Cyclic case)

  5. x2tan1xdx\int x^2 \tan^{-1} x \, dx


💡 Pro Tips

  1. Always differentiate the polynomial (it eventually becomes 0)
  2. For log functions, put them in the D column (LIATE rule)
  3. For cyclic integrals, stop after two rows and solve algebraically
  4. Check signs carefully - alternating +, -, +, -, ...
  5. Verify by differentiation if time permits

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs