Indefinite Integration8 min read

Reduction Formulas

Reduction formulas are recursive relations that express an integral involving a power \( n \) in terms of the same integral with a lower power \( n-2 \) or \( n-1 \). They systematically reduce complex integrals to simpler base cases, saving time and minimizing errors.

integrationreduction-formulasrecursiontechniques

Reduction Formulas — A Comprehensive Guide for JEE Main

What Are Reduction Formulas?

Reduction formulas are recursive relations that express an integral involving a power nn in terms of the same integral with a lower power n2n-2 or n1n-1. They systematically reduce complex integrals to simpler base cases, saving time and minimizing errors.

Core Reduction Formulas

1. For ∫ sinⁿx dx

In=sinn1xcosxn+n1nIn2I_n = -\frac{\sin^{n-1}x \cos x}{n} + \frac{n-1}{n} I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=cosx+CI_1 = -\cos x + C

2. For ∫ cosⁿx dx

In=cosn1xsinxn+n1nIn2I_n = \frac{\cos^{n-1}x \sin x}{n} + \frac{n-1}{n} I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=sinx+CI_1 = \sin x + C

3. For ∫ tanⁿx dx

In=tann1xn1In2I_n = \frac{\tan^{n-1}x}{n-1} - I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=lnsecx+CI_1 = \ln|\sec x| + C

4. For ∫ cotⁿx dx

In=cotn1xn1In2I_n = -\frac{\cot^{n-1}x}{n-1} - I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=lnsinx+CI_1 = \ln|\sin x| + C

5. For ∫ secⁿx dx

In=secn2xtanxn1+n2n1In2I_n = \frac{\sec^{n-2}x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=lnsecx+tanx+CI_1 = \ln|\sec x + \tan x| + C, I2=tanx+CI_2 = \tan x + C

6. For ∫ cosecⁿx dx

In=cscn2xcotxn1+n2n1In2I_n = -\frac{\csc^{n-2}x \cot x}{n-1} + \frac{n-2}{n-1} I_{n-2} Base cases:
I0=x+CI_0 = x + C, I1=lncscxcotx+CI_1 = \ln|\csc x - \cot x| + C, I2=cotx+CI_2 = -\cot x + C


Solved Examples

Example 1: ∫ sin⁴x dx

Using the reduction formula for sinⁿx with n=4n = 4: I4=sin3xcosx4+34I2I_4 = -\frac{\sin^3 x \cos x}{4} + \frac{3}{4} I_2 For I2I_2: I2=sinxcosx2+12I0=sinxcosx2+x2I_2 = -\frac{\sin x \cos x}{2} + \frac{1}{2} I_0 = -\frac{\sin x \cos x}{2} + \frac{x}{2} Substituting back: I4=sin3xcosx4+34(sinxcosx2+x2)I_4 = -\frac{\sin^3 x \cos x}{4} + \frac{3}{4}\left(-\frac{\sin x \cos x}{2} + \frac{x}{2}\right) I4=sin3xcosx43sinxcosx8+3x8+C\boxed{I_4 = -\frac{\sin^3 x \cos x}{4} - \frac{3\sin x \cos x}{8} + \frac{3x}{8} + C} Using sin2x=2sinxcosx\sin 2x = 2\sin x \cos x and sin4x=8sin3xcosx4sinxcosx\sin 4x = 8\sin^3 x \cos x - 4\sin x \cos x, this simplifies to: I4=3x8sin2x4+sin4x32+CI_4 = \frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C

Example 2: ∫ sec⁵x dx

Using the reduction formula for secⁿx with n=5n = 5: I5=sec3xtanx4+34I3I_5 = \frac{\sec^3 x \tan x}{4} + \frac{3}{4} I_3 For I3I_3: I3=secxtanx2+12I1=secxtanx2+12lnsecx+tanxI_3 = \frac{\sec x \tan x}{2} + \frac{1}{2} I_1 = \frac{\sec x \tan x}{2} + \frac{1}{2}\ln|\sec x + \tan x| Thus: I5=sec3xtanx4+3secxtanx8+38lnsecx+tanx+C\boxed{I_5 = \frac{\sec^3 x \tan x}{4} + \frac{3\sec x \tan x}{8} + \frac{3}{8}\ln|\sec x + \tan x| + C}


Wallis' Formulas for Definite Integrals

Standard Form

0π/2sinnxdx=0π/2cosnxdx={(n1)(n3)2n(n2)3if n is odd(n1)(n3)1n(n2)2π2if n is even\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \cos^n x \, dx = \begin{cases} \dfrac{(n-1)(n-3)\cdots 2}{n(n-2)\cdots 3} & \text{if } n \text{ is odd} \\ \dfrac{(n-1)(n-3)\cdots 1}{n(n-2)\cdots 2} \cdot \dfrac{\pi}{2} & \text{if } n \text{ is even} \end{cases}

Extended Form (for ∫₀^(π/2) sinᵐx cosⁿx dx)

Let both mm and nn be non-negative integers. 0π/2sinmxcosnxdx=Γ(m+12)Γ(n+12)2Γ(m+n+22)\int_0^{\pi/2} \sin^m x \cos^n x \, dx = \frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)} For integer values: =(m1)!!(n1)!!(m+n)!!×k= \frac{(m-1)!! (n-1)!!}{(m+n)!!} \times k where k=π/2k = \pi/2 if both mm and nn are even, otherwise k=1k = 1.

Notation: n!!n!! denotes the double factorial:

  • For odd nn: n!!=n(n2)(n4)1n!! = n(n-2)(n-4)\cdots 1
  • For even nn: n!!=n(n2)(n4)2n!! = n(n-2)(n-4)\cdots 2

Wallis' Formula Examples

Example 3: ∫₀^(π/2) sin⁶x dx

n=6n = 6 (even): 0π/2sin6xdx=531642π2=1548π2=5π32\int_0^{\pi/2} \sin^6 x \, dx = \frac{5 \cdot 3 \cdot 1}{6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} = \frac{15}{48} \cdot \frac{\pi}{2} = \frac{5\pi}{32}

Example 4: ∫₀^(π/2) cos⁵x dx

n=5n = 5 (odd): 0π/2cos5xdx=4253=815\int_0^{\pi/2} \cos^5 x \, dx = \frac{4 \cdot 2}{5 \cdot 3} = \frac{8}{15}

Example 5: ∫₀^(π/2) sin⁴x cos²x dx

m=4m = 4 (even), n=2n = 2 (even) → both even, so k=π/2k = \pi/2

Numerator: (3)(1)×(1)=3(3)(1) \times (1) = 3

Denominator: (6)(4)(2)=48(6)(4)(2) = 48

0π/2sin4xcos2xdx=348π2=π32\int_0^{\pi/2} \sin^4 x \cos^2 x \, dx = \frac{3}{48} \cdot \frac{\pi}{2} = \frac{\pi}{32}


Important Observations and Special Cases

Symmetry Properties

  1. 0π/2sinnxdx=0π/2cosnxdx\int_0^{\pi/2} \sin^n x \, dx = \int_0^{\pi/2} \cos^n x \, dx
  2. 0π/2sinmxcosnxdx=0π/2sinnxcosmxdx\int_0^{\pi/2} \sin^m x \cos^n x \, dx = \int_0^{\pi/2} \sin^n x \cos^m x \, dx
  3. 0πsinnxdx=20π/2sinnxdx\int_0^{\pi} \sin^n x \, dx = 2\int_0^{\pi/2} \sin^n x \, dx for even nn
  4. 0πcosnxdx={0if n is odd20π/2cosnxdxif n is even\int_0^{\pi} \cos^n x \, dx = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 2\int_0^{\pi/2} \cos^n x \, dx & \text{if } n \text{ is even} \end{cases}

Product-to-Sum Approach

For integrals like sinmxcosnxdx\int \sin^m x \cos^n x \, dx with both mm and nn odd, it's often simpler to use: sinmxcosnx=12m+n2terms of the form sin(kx) or cos(kx)\sin^m x \cos^n x = \frac{1}{2^{m+n-2}} \sum \text{terms of the form } \sin(kx) \text{ or } \cos(kx)


JEE Previous Year Questions

PYQ 1: JEE Main

If In=0π/4tannxdxI_n = \int_0^{\pi/4} \tan^n x \, dx, then In+In+2=1n+1I_n + I_{n+2} = \frac{1}{n+1}.
Find I4+I6I_4 + I_6.

Solution: From the given relation with n=4n = 4: I4+I6=15I_4 + I_6 = \frac{1}{5}

PYQ 2: JEE Advanced

If In=01(1x5)ndxI_n = \int_0^1 (1-x^5)^n dx, prove that In=5n5n+1In1I_n = \frac{5n}{5n+1} I_{n-1}.
Find I6I5\frac{I_6}{I_5}.

Solution: Using integration by parts: In=01(1x5)ndxI_n = \int_0^1 (1-x^5)^n dx Let u=(1x5)nu = (1-x^5)^n, dv=dxdv = dx. Then: In=[x(1x5)n]01+5n01x5(1x5)n1dxI_n = \left[x(1-x^5)^n\right]_0^1 + 5n \int_0^1 x^5 (1-x^5)^{n-1} dx Since x5=1(1x5)x^5 = 1 - (1-x^5): In=5n01[1(1x5)](1x5)n1dx=5n(In1In)I_n = 5n \int_0^1 [1 - (1-x^5)](1-x^5)^{n-1} dx = 5n(I_{n-1} - I_n) Solving: In=5n5n+1In1I_n = \frac{5n}{5n+1} I_{n-1}

For n=6n = 6: I6I5=5×65×6+1=3031\frac{I_6}{I_5} = \frac{5 \times 6}{5 \times 6 + 1} = \frac{30}{31}

PYQ 3: JEE Main 2021

Evaluate 0πxsin4xcos6xdx\int_0^{\pi} x \sin^4 x \cos^6 x \, dx.

Solution: Using property 0πxf(sinx,cosx)dx=π20πf(sinx,cosx)dx\int_0^\pi x f(\sin x, \cos x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x, \cos x) dx when ff is even about π/2\pi/2: I=π20πsin4xcos6xdx=π0π/2sin4xcos6xdxI = \frac{\pi}{2} \int_0^\pi \sin^4 x \cos^6 x \, dx = \pi \int_0^{\pi/2} \sin^4 x \cos^6 x \, dx Using Wallis' extended formula with m=4m = 4, n=6n = 6 (both even): 0π/2sin4xcos6xdx=31531108642π2=45π7680=3π512\int_0^{\pi/2} \sin^4 x \cos^6 x \, dx = \frac{3 \cdot 1 \cdot 5 \cdot 3 \cdot 1}{10 \cdot 8 \cdot 6 \cdot 4 \cdot 2} \cdot \frac{\pi}{2} = \frac{45\pi}{7680} = \frac{3\pi}{512} Thus: I=π3π512=3π2512I = \pi \cdot \frac{3\pi}{512} = \frac{3\pi^2}{512}


Common Pitfalls and Tips

  1. Base Cases Matter: Always verify I0I_0 and I1I_1 for each reduction formula.
  2. Sign Convention: Note the negative signs in sin, tan, cot, and cosec formulas.
  3. Wallis' Formula Conditions: Remember the π/2\pi/2 factor applies only when both exponents in sinmxcosnxdx\int \sin^m x \cos^n x \, dx are even.
  4. Symmetry Utilization: For definite integrals over symmetric intervals, check if the integrand has symmetry properties to simplify.
  5. Alternative Methods: For small powers, direct expansion might be quicker than applying reduction formulas repeatedly.

Practice Problems

  1. Find cos6xdx\int \cos^6 x \, dx using reduction formula.
  2. Evaluate 0π/2sin7xdx\int_0^{\pi/2} \sin^7 x \, dx using Wallis' formula.
  3. Find cot4xdx\int \cot^4 x \, dx.
  4. Evaluate 0π/2sin3xcos5xdx\int_0^{\pi/2} \sin^3 x \cos^5 x \, dx.
  5. Derive reduction formula for secnxdx\int \sec^n x \, dx.
  6. If Im,n=0π/2sinmxcosnxdxI_{m,n} = \int_0^{\pi/2} \sin^m x \cos^n x \, dx, prove that Im,n=m1m+nIm2,nI_{m,n} = \frac{m-1}{m+n} I_{m-2,n}.
  7. Evaluate 0πsin6xdx\int_0^{\pi} \sin^6 x \, dx.

Final Remarks

Reduction formulas and Wallis' formulas are powerful tools for JEE preparation. Remember:

  • Use reduction formulas for indefinite integrals or when boundary conditions are not 0 to π/2.
  • Use Wallis' formulas for definite integrals over [0, π/2] with trigonometric integrands.
  • Always check if symmetry properties can simplify your calculation first.

Mastering these techniques will significantly enhance your efficiency in solving integration problems in JEE Main and Advanced.

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs