Complex Numbers in Integration: Elegant Techniques for JEE
Introduction: The Power of Complex Numbers in Integration
Complex numbers provide an elegant and efficient approach to solving integrals involving products of exponential and trigonometric functions. By leveraging Euler's formula:
eiθ=cosθ+isinθ
we can transform challenging integrals into manageable ones.
Core Principles
Euler's Formula and Its Consequences
From eiθ=cosθ+isinθ, we derive:
cosθ=2eiθ+e−iθ=Re(eiθ)
sinθ=2ieiθ−e−iθ=Im(eiθ)
The Fundamental Idea
Instead of integrating cos(bx) or sin(bx) directly, we:
- Replace trigonometric functions with complex exponentials
- Integrate the simpler exponential functions
- Extract the real or imaginary part as needed
Technique 1: Integrating eaxcos(bx) and eaxsin(bx)
Traditional Method vs. Complex Method
The traditional approach using integration by parts is tedious and error-prone. The complex method is systematic and elegant.
Key Insight
eaxcos(bx)=Re(eax⋅eibx)=Re(e(a+ib)x)
eaxsin(bx)=Im(eax⋅eibx)=Im(e(a+ib)x)
The Master Formula
∫e(a+ib)xdx=a+ibe(a+ib)x+C
After integration, separate the real and imaginary parts.
Example: ∫excos(2x)dx
Let I=∫excos(2x)dx and J=∫exsin(2x)dx. Then:
I+iJ=∫ex⋅e2ixdx=∫e(1+2i)xdx=1+2ie(1+2i)x+C
Rationalizing the denominator:
I+iJ=5e(1+2i)x(1−2i)+C
Expanding e(1+2i)x=ex(cos2x+isin2x):
I+iJ=5ex[(cos2x+2sin2x)+i(sin2x−2cos2x)]+C
Thus:
I=5ex(cos2x+2sin2x)+C
J=5ex(sin2x−2cos2x)+C
General Formulas
For ∫eaxcos(bx)dx and ∫eaxsin(bx)dx:
∫eaxcos(bx)dx=a2+b2eax(acosbx+bsinbx)+C
∫eaxsin(bx)dx=a2+b2eax(asinbx−bcosbx)+C
Memory aid:
For cos: acos+bsin
For sin: asin−bcos
Denominator: a2+b2
Technique 2: Products of Trigonometric Functions
Using complex exponentials, products of trigonometric functions can be converted to sums of exponentials, which are easier to integrate.
Example: ∫cos(3x)cos(5x)dx
cos(3x)cos(5x)=2e3ix+e−3ix⋅2e5ix+e−5ix
=41(e8ix+e−8ix+e2ix+e−2ix)
=21(cos8x+cos2x)
Thus:
∫cos(3x)cos(5x)dx=21(8sin8x+2sin2x)+C
Technique 3: Powers of Trigonometric Functions
Using De Moivre's theorem and the substitution z=eix, we can express powers of trigonometric functions as sums of multiple-angle terms.
Example: Expressing cos4x
Let z=eix. Then:
cosx=2z+z−1
cos4x=(2z+z−1)4=161(z+z−1)4
Expanding:
(z+z−1)4=z4+4z2+6+4z−2+z−4
=(z4+z−4)+4(z2+z−2)+6
=2cos4x+8cos2x+6
Therefore:
cos4x=81cos4x+21cos2x+83
Integrating:
∫cos4xdx=32sin4x+4sin2x+83x+C
Technique 4: The "I + iJ" Method
This method is particularly powerful for integrals involving products of exponential and trigonometric functions.
Example: ∫excos2xdx
cos2x=21+cos2x
Thus:
∫excos2xdx=21∫exdx+21∫excos2xdx
Using the formula for ∫excos2xdx (with a=1,b=2):
∫excos2xdx=5ex(cos2x+2sin2x)
Therefore:
∫excos2xdx=2ex+10ex(cos2x+2sin2x)+C
=10ex(5+cos2x+2sin2x)+C
JEE Previous Year Questions (PYQs)
PYQ 1: JEE Advanced Style
Evaluate ∫e3xcos4xdx.
Using the formula with a=3,b=4:
∫e3xcos4xdx=9+16e3x(3cos4x+4sin4x)+C=25e3x(3cos4x+4sin4x)+C
PYQ 2: JEE Main Pattern
If ∫e2xsin3xdx=e2x(Asin3x+Bcos3x)+C, find A and B.
Using the formula with a=2,b=3:
∫e2xsin3xdx=4+9e2x(2sin3x−3cos3x)+C=e2x(132sin3x−133cos3x)+C
Thus, A=132,B=−133.
PYQ 3: Evaluate ∫cosxcos2xcos3xdx
Using complex exponentials with z=eix:
cosxcos2xcos3x=41(cos6x+cos4x+cos2x+1)
Integrating:
∫cosxcos2xcos3xdx=41(6sin6x+4sin4x+2sin2x+x)+C
=24sin6x+16sin4x+8sin2x+4x+C
Important Formulas and Identities
Complex Representations
cosθ=2eiθ+e−iθ,sinθ=2ieiθ−e−iθ
cos2θ=21+cos2θ,sin2θ=21−cos2θ
Integration Formulas
∫eaxcos(bx)dx=a2+b2eax(acosbx+bsinbx)+C
∫eaxsin(bx)dx=a2+b2eax(asinbx−bcosbx)+C
Product-to-Sum (via Complex Exponentials)
cosAcosB=21[cos(A−B)+cos(A+B)]
sinAsinB=21[cos(A−B)−cos(A+B)]
sinAcosB=21[sin(A+B)+sin(A−B)]
When to Use Complex Numbers
Use complex numbers when:
- Integrating products of exponentials and trigonometric functions
- Dealing with high powers of trigonometric functions
- Simplifying products of multiple trigonometric functions
- Both ∫eaxcos(bx)dx and ∫eaxsin(bx)dx are needed
Alternative methods may be better when:
- The integral is a simple trigonometric integral
- Standard substitutions are straightforward
- The integrand is a rational function
Practice Problems
- Evaluate ∫e−xcos(3x)dx using complex numbers.
- Express cos5x in terms of multiple angles and integrate.
- Evaluate ∫e2xsinxcosxdx.
- Find ∫sin(2x)sin(3x)sin(5x)dx.
- If ∫excosxdx=ex⋅f(x)+C, find f(x).
Summary
The complex number method provides a systematic and elegant approach to integrals involving products of exponential and trigonometric functions. The key steps are:
- Convert trigonometric functions to complex exponentials using Euler's formula.
- Integrate the exponential, which is straightforward.
- Separate real and imaginary parts.
- Extract the desired result.
Mastering this technique can significantly reduce solution time and minimize errors in competitive exams like JEE.
Embrace the elegance of complex numbers in integration—it transforms challenging problems into manageable ones!