Indefinite Integration7 min read

Complex Numbers in Integration: Elegant Techniques for JEE

Complex numbers provide an elegant and efficient approach to solving integrals involving products of exponential and trigonometric functions. By leveraging Euler's formula:

integrationcomplex-numberseuleradvanced

Complex Numbers in Integration: Elegant Techniques for JEE

Introduction: The Power of Complex Numbers in Integration

Complex numbers provide an elegant and efficient approach to solving integrals involving products of exponential and trigonometric functions. By leveraging Euler's formula: eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta we can transform challenging integrals into manageable ones.

Core Principles

Euler's Formula and Its Consequences

From eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta, we derive: cosθ=eiθ+eiθ2=Re(eiθ)\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \operatorname{Re}(e^{i\theta}) sinθ=eiθeiθ2i=Im(eiθ)\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \operatorname{Im}(e^{i\theta})

The Fundamental Idea

Instead of integrating cos(bx)\cos(bx) or sin(bx)\sin(bx) directly, we:

  1. Replace trigonometric functions with complex exponentials
  2. Integrate the simpler exponential functions
  3. Extract the real or imaginary part as needed

Technique 1: Integrating eaxcos(bx)e^{ax}\cos(bx) and eaxsin(bx)e^{ax}\sin(bx)

Traditional Method vs. Complex Method

The traditional approach using integration by parts is tedious and error-prone. The complex method is systematic and elegant.

Key Insight

eaxcos(bx)=Re(eaxeibx)=Re(e(a+ib)x)e^{ax}\cos(bx) = \operatorname{Re}\left(e^{ax} \cdot e^{ibx}\right) = \operatorname{Re}\left(e^{(a+ib)x}\right) eaxsin(bx)=Im(eaxeibx)=Im(e(a+ib)x)e^{ax}\sin(bx) = \operatorname{Im}\left(e^{ax} \cdot e^{ibx}\right) = \operatorname{Im}\left(e^{(a+ib)x}\right)

The Master Formula

e(a+ib)xdx=e(a+ib)xa+ib+C\int e^{(a+ib)x} \, dx = \frac{e^{(a+ib)x}}{a+ib} + C After integration, separate the real and imaginary parts.

Example: excos(2x)dx\int e^x \cos(2x) \, dx

Let I=excos(2x)dxI = \int e^x \cos(2x) \, dx and J=exsin(2x)dxJ = \int e^x \sin(2x) \, dx. Then: I+iJ=exe2ixdx=e(1+2i)xdx=e(1+2i)x1+2i+CI + iJ = \int e^x \cdot e^{2ix} \, dx = \int e^{(1+2i)x} \, dx = \frac{e^{(1+2i)x}}{1+2i} + C Rationalizing the denominator: I+iJ=e(1+2i)x(12i)5+CI + iJ = \frac{e^{(1+2i)x}(1-2i)}{5} + C Expanding e(1+2i)x=ex(cos2x+isin2x)e^{(1+2i)x} = e^x(\cos 2x + i\sin 2x): I+iJ=ex5[(cos2x+2sin2x)+i(sin2x2cos2x)]+CI + iJ = \frac{e^x}{5}\left[(\cos 2x + 2\sin 2x) + i(\sin 2x - 2\cos 2x)\right] + C Thus: I=ex5(cos2x+2sin2x)+CI = \frac{e^x}{5}(\cos 2x + 2\sin 2x) + C J=ex5(sin2x2cos2x)+CJ = \frac{e^x}{5}(\sin 2x - 2\cos 2x) + C

General Formulas

For eaxcos(bx)dx\int e^{ax}\cos(bx) \, dx and eaxsin(bx)dx\int e^{ax}\sin(bx) \, dx: eaxcos(bx)dx=eaxa2+b2(acosbx+bsinbx)+C\int e^{ax}\cos(bx) \, dx = \frac{e^{ax}}{a^2+b^2}(a\cos bx + b\sin bx) + C eaxsin(bx)dx=eaxa2+b2(asinbxbcosbx)+C\int e^{ax}\sin(bx) \, dx = \frac{e^{ax}}{a^2+b^2}(a\sin bx - b\cos bx) + C

Memory aid:
For cos: acos+bsina\cos + b\sin
For sin: asinbcosa\sin - b\cos
Denominator: a2+b2a^2 + b^2


Technique 2: Products of Trigonometric Functions

Using complex exponentials, products of trigonometric functions can be converted to sums of exponentials, which are easier to integrate.

Example: cos(3x)cos(5x)dx\int \cos(3x)\cos(5x) \, dx

cos(3x)cos(5x)=e3ix+e3ix2e5ix+e5ix2\cos(3x)\cos(5x) = \frac{e^{3ix} + e^{-3ix}}{2} \cdot \frac{e^{5ix} + e^{-5ix}}{2} =14(e8ix+e8ix+e2ix+e2ix)= \frac{1}{4}(e^{8ix} + e^{-8ix} + e^{2ix} + e^{-2ix}) =12(cos8x+cos2x)= \frac{1}{2}(\cos 8x + \cos 2x) Thus: cos(3x)cos(5x)dx=12(sin8x8+sin2x2)+C\int \cos(3x)\cos(5x) \, dx = \frac{1}{2}\left(\frac{\sin 8x}{8} + \frac{\sin 2x}{2}\right) + C


Technique 3: Powers of Trigonometric Functions

Using De Moivre's theorem and the substitution z=eixz = e^{ix}, we can express powers of trigonometric functions as sums of multiple-angle terms.

Example: Expressing cos4x\cos^4 x

Let z=eixz = e^{ix}. Then: cosx=z+z12\cos x = \frac{z + z^{-1}}{2} cos4x=(z+z12)4=116(z+z1)4\cos^4 x = \left(\frac{z + z^{-1}}{2}\right)^4 = \frac{1}{16}(z + z^{-1})^4 Expanding: (z+z1)4=z4+4z2+6+4z2+z4(z + z^{-1})^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4} =(z4+z4)+4(z2+z2)+6= (z^4 + z^{-4}) + 4(z^2 + z^{-2}) + 6 =2cos4x+8cos2x+6= 2\cos 4x + 8\cos 2x + 6 Therefore: cos4x=18cos4x+12cos2x+38\cos^4 x = \frac{1}{8}\cos 4x + \frac{1}{2}\cos 2x + \frac{3}{8} Integrating: cos4xdx=sin4x32+sin2x4+3x8+C\int \cos^4 x \, dx = \frac{\sin 4x}{32} + \frac{\sin 2x}{4} + \frac{3x}{8} + C


Technique 4: The "I + iJ" Method

This method is particularly powerful for integrals involving products of exponential and trigonometric functions.

Example: excos2xdx\int e^x \cos^2 x \, dx

cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2} Thus: excos2xdx=12exdx+12excos2xdx\int e^x \cos^2 x \, dx = \frac{1}{2}\int e^x \, dx + \frac{1}{2}\int e^x \cos 2x \, dx Using the formula for excos2xdx\int e^x \cos 2x \, dx (with a=1,b=2a = 1, b = 2): excos2xdx=ex5(cos2x+2sin2x)\int e^x \cos 2x \, dx = \frac{e^x}{5}(\cos 2x + 2\sin 2x) Therefore: excos2xdx=ex2+ex10(cos2x+2sin2x)+C\int e^x \cos^2 x \, dx = \frac{e^x}{2} + \frac{e^x}{10}(\cos 2x + 2\sin 2x) + C =ex10(5+cos2x+2sin2x)+C= \frac{e^x}{10}(5 + \cos 2x + 2\sin 2x) + C


JEE Previous Year Questions (PYQs)

PYQ 1: JEE Advanced Style

Evaluate e3xcos4xdx\int e^{3x} \cos 4x \, dx.
Using the formula with a=3,b=4a = 3, b = 4: e3xcos4xdx=e3x9+16(3cos4x+4sin4x)+C=e3x25(3cos4x+4sin4x)+C\int e^{3x} \cos 4x \, dx = \frac{e^{3x}}{9+16}(3\cos 4x + 4\sin 4x) + C = \frac{e^{3x}}{25}(3\cos 4x + 4\sin 4x) + C

PYQ 2: JEE Main Pattern

If e2xsin3xdx=e2x(Asin3x+Bcos3x)+C\int e^{2x} \sin 3x \, dx = e^{2x}(A\sin 3x + B\cos 3x) + C, find A and B.
Using the formula with a=2,b=3a = 2, b = 3: e2xsin3xdx=e2x4+9(2sin3x3cos3x)+C=e2x(213sin3x313cos3x)+C\int e^{2x} \sin 3x \, dx = \frac{e^{2x}}{4+9}(2\sin 3x - 3\cos 3x) + C = e^{2x}\left(\frac{2}{13}\sin 3x - \frac{3}{13}\cos 3x\right) + C Thus, A=213,B=313A = \frac{2}{13}, B = -\frac{3}{13}.

PYQ 3: Evaluate cosxcos2xcos3xdx\int \cos x \cos 2x \cos 3x \, dx

Using complex exponentials with z=eixz = e^{ix}: cosxcos2xcos3x=14(cos6x+cos4x+cos2x+1)\cos x \cos 2x \cos 3x = \frac{1}{4}(\cos 6x + \cos 4x + \cos 2x + 1) Integrating: cosxcos2xcos3xdx=14(sin6x6+sin4x4+sin2x2+x)+C\int \cos x \cos 2x \cos 3x \, dx = \frac{1}{4}\left(\frac{\sin 6x}{6} + \frac{\sin 4x}{4} + \frac{\sin 2x}{2} + x\right) + C =sin6x24+sin4x16+sin2x8+x4+C= \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + \frac{x}{4} + C


Important Formulas and Identities

Complex Representations

cosθ=eiθ+eiθ2,sinθ=eiθeiθ2i\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} cos2θ=1+cos2θ2,sin2θ=1cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2}, \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}

Integration Formulas

eaxcos(bx)dx=eaxa2+b2(acosbx+bsinbx)+C\int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2}(a\cos bx + b\sin bx) + C eaxsin(bx)dx=eaxa2+b2(asinbxbcosbx)+C\int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2}(a\sin bx - b\cos bx) + C

Product-to-Sum (via Complex Exponentials)

cosAcosB=12[cos(AB)+cos(A+B)]\cos A \cos B = \frac{1}{2}[\cos(A-B) + \cos(A+B)] sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)] sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]


When to Use Complex Numbers

Use complex numbers when:

  • Integrating products of exponentials and trigonometric functions
  • Dealing with high powers of trigonometric functions
  • Simplifying products of multiple trigonometric functions
  • Both eaxcos(bx)dx\int e^{ax}\cos(bx) \, dx and eaxsin(bx)dx\int e^{ax}\sin(bx) \, dx are needed

Alternative methods may be better when:

  • The integral is a simple trigonometric integral
  • Standard substitutions are straightforward
  • The integrand is a rational function

Practice Problems

  1. Evaluate excos(3x)dx\int e^{-x} \cos(3x) \, dx using complex numbers.
  2. Express cos5x\cos^5 x in terms of multiple angles and integrate.
  3. Evaluate e2xsinxcosxdx\int e^{2x} \sin x \cos x \, dx.
  4. Find sin(2x)sin(3x)sin(5x)dx\int \sin(2x) \sin(3x) \sin(5x) \, dx.
  5. If excosxdx=exf(x)+C\int e^{x} \cos x \, dx = e^{x} \cdot f(x) + C, find f(x)f(x).

Summary

The complex number method provides a systematic and elegant approach to integrals involving products of exponential and trigonometric functions. The key steps are:

  1. Convert trigonometric functions to complex exponentials using Euler's formula.
  2. Integrate the exponential, which is straightforward.
  3. Separate real and imaginary parts.
  4. Extract the desired result.

Mastering this technique can significantly reduce solution time and minimize errors in competitive exams like JEE.


Embrace the elegance of complex numbers in integration—it transforms challenging problems into manageable ones!

Ready to Apply These Techniques?

Practice with real JEE Main questions and see these methods in action.

Practice Indefinite Integration PYQs